
Approximate String Matching and the Automation of Word Games

?Hal Berghel
?David Roach
$John Talburt

?The University of Arkansas
$The University of Arkansas at Little Rock

Abstract

In this paper we discuss the utility of approximate string
matching procedures in the automation of various aspects
of word game construction and solution. These procedures
are then related to the underlying issues in computational
linguistics.

Introduction

Word games may be enjoyed at a number of different
levels. The neophyte may derive satisfaction from an
incomplete attempt at solving a crossword puzzle. The
serious practitioner may find pleasure at a loftier plateau,
perhaps quickly solving a very difficult cryptogram or a
lengthy anagram. Possibly some are attracted by the
attendant silent soliloquy or the individuality of the effort.
For whatever reasons, word games in the twentieth century
are enormously popular and, for some, have come to be
associated with intelligence and erudition.

However, word games are also interesting because they
illustrate classes of problems which are of pressing concern
to the computational linguist. In the automation of various
aspects of word games, one deals with such issues as
efficient lexical organization and processing, exact and
approximate string matching techniques, search strategies
and heuristics, problem representation, knowledge
representation, rule based expert systems, and so forth. In
this paper, we describe the interrelationships between these
issues and illustrate how they impact current approaches
toward automating word games.

The Crux of Cruciverbalism

Modern crossword puzzles are as old as this century. They
are typically defined upon an mxn matrix where most, if
not all, of the cells are place holders for characters.
Consecutive characters make up words along the horizontal
and vertical axes. These words are semantically related to
a ‘clue’ which is usually associated with the ID of the first
cell in the word slot.

TH0307-9/90/0000/0209$01 .OO 0 1990 IEEE

Of course there are numerous variations on this theme.
Some puzzles, like those commonly found in British
newspapers, are more sparse (i.e., have a lower density or
percentage of unfilled or open cells) than others. Some
theme puzzles are defined over non-rectangular shapes
(perhaps a heart shape for Valentine’s Day, or a tree shape
for Christmas). Others may require that all open cells
interlock horizontal and vertical word slots which include
them (as in the typical American puzzle). Though the
format of crossword puzzles may differ, they all can be
described in terms of these three characteristics: the
geometry of the puzzle, the density of the puzzle and the
degree of interlocking.

Crossword puzzles are created in stages. To use the
terminology of Smith and Steen [24], we refer to the
creation as ‘crossword compilation’. The following
operations are involved in crossword compilation: 1)
creation of host matrix, 2) determination of overall design,
3) specification of word slots, 4) identification of
occurrences of cell sharing, 5) construction of solution
set(s), and 6) composition of clue set(s) for the solution
set(s).

We note that the typical solution of the puzzle involves
stages 5) and 6) in reverse order. Stages 1) through 4) are
given consideration in the construction of the puzzle.
Although the end-user normally does not give a great deal
of thought to these initial stages, they very much affect the
aesthetics and recreational value of the puzzle.

Each of these stages have some interest to the
computational linguist as well. Without question, most of
the literature involves stage 5). Although the algorithms
are of only historical interest now, Mazlack’s pioneering
work on the generation of solution sets [15,16,17] remain
useful references for they first defined the problem and first
called attention to the fact that crossword compilation
characterized several interesting issues in computational
linguistics. It was Smith and Steen [24] who first came to
understand and address the computationally problematic
aspects of compilation. Further, they set many of the
standards against which current work is measured. In
addition, much of the current nomenclature derives from
their work.

In recent years, several efficient solution algorithms have
been developed [3,14,24,28], based upon a wide variety of
computational paradigms. In addition, significant work has
been done on the automation of clue set construction [23],

209

the technical aspects of automating the early stages of
crossword compilation [9], the human factors aspect
[25,27], search heuristics [9,15,161, performance analysis
[5] and estimation of the size of the solution set [12,13].

However, it is stage 5) which continues to receive the
greatest attention. Specifically, most investigators have
been concerned with 1) the development of efficient search
strategies for lexical look-up and 2) with heuristics which
narrow the search space and/or reduce the complexity of
the problem (see, e.g., [3,14,241 for recent illustrations). It
is easy to see why this is the case by referring to Figure 1.

Figure 1: Typical American Crossword Puzzle

Suppose that we wish to compile this puzzle. This entails
the construction of a solution set where all of the words
interlock appropriately (we note that there are different
conventions which are employed in different ‘crossword
cultures’) according to the geometry and density of the
particular puzzle. Lexical insertion becomes more
complicated as we move progressively through the sub-
regions of the puzzle. The reason for this is that there are
increasingly many constraints placed on inserted words.
To illustrate, suppose that we have completely filled out the
top-left region. We note that 23-across carries into the top-
middle region. Thus, the insertion of 21-down is
constrained from the start by an ‘inherited’ character in
position 2. Denoting this character by the variable, X,

Of
course, this compounds our lexical look-up procedures:
sublinear algorithms are no longer appropriate and we lose
our entry point into the lexicon without the first character.

Of course, we could organize the lexicon by word length,
but this would only solve part of the problem for it alone
would require sequential searches of the partitions. In
general, most such searches will fail because of the non-
uniform distribution of characters within word positions. A
better approach would be to test within the constraints
imposed by the very insertion, itself. In other words, we
will filter our database look-ups in advance. One common
filtration technique is n-gram analysis (cf., [4,11,19]).

An n-gram of a string of characters is any segment of
length n within the string. Thus, the digrams of ‘ABC’ are

we’re looking for a word of the form ‘- X - - - ’.

‘AB’ and ‘BC’. Typically, for computational linguistics
purposes, strings are padded with n-1 spaces for n-gram
analysis, so that each character appears in exactly n n-
grams, but we’ll ignore this variation for the sake of
simplicity.

N-gram analysis is useful precisely because of the non-
uniform distribution of characters within the word
positions, the phenomena which created the problems for
us. A list of legitimate n-grams is extracted from the
lexicon (we can even increase the accuracy by relating n-
grams to positions within words). We note that in the case
of our c y e n t example, the failure to produce trigrams of
the form - X -’ and ‘X - -’ means that there is no way for
the string ‘- X - - -’ to be matched with any lexical entry.
Since this happens more often than not, efficiency is
achieved through reduced lexical look-ups (see refs. [4,19]
for details).

Thus, n-gram analysis is one of a number of filtration
techniques which increase the efficiency of the lexical
processing. Equally important, however, are the heuristics
which are used to reduce the complexity of the puzzle.
These heuristics frcquently arise at several different levels
in the compilers design. To illustrate, let’s return again to
Figure 1. Were we to insert words in the sequence 1-
across, 14-across, 17-across, 20-across, 23-across, 1-down,
2-down, 3-down, 4-down, we would have no ‘fail points’
prior to the sixth insertion. However, efficient compilation
will rule out impossible combinations of the interlocking
words as soon as possible so as to narrow the search space.
Were we to proceed 1-across, 1-down, 14-across, 2-down,
etc., we would have one fail point after the second
insertion, two after the third, etc. It is plain to see that
since most of the possible word combinations will not
conform to the rules of the puzzle, it is to our advantage to
proliferate fail points as high in the search trce as possible.

A refinement of the strategy of failing as early as possible
applies to migration between sub-regions of the puzzle.
Again, in the top-left region of our puzzle there are 2 words
of length 3 ,3 of length 4 , 2 of length 5 , l of 7 and 1 of 10.
Since there are considerably fewer words of length 3 and
10 than there are of lengths 4, 5 and 7, these slots will be
harder to fill. Thus, we may adapt our strategy to the more
general case by beginning with the toughest word slots
prior to alternating between horizontal and vertical
insertions. In the literature, this is called ‘neighborhood
prioritization’. (For additional details on compilation/
solution strategies, see references [3,9]).

As we shall see below, the quest for efficient lexical
searching (usually involving some sort of filtration) and the
development of sophisticated heuristics are the dominant
computational linguistic themes in the automation of word
games.

Anagrams

Anagrams are transpositions of words. ‘OGD’ is
anagrammatic for ‘GOD’ and ‘DOG’; ‘DLSE’ and ‘EDSL’
for ‘SLED’, and so forth. Faulk [101 classifies anagrams as
strings with material identity, meaning that both the
anagram and the related word have the same character
composition.

Anagrams are a pleasantly different type of word game.
Unlike crossword puzzles, the character content of an

2 IO

anagram is given in advance; it is simply a matter of
finding the transposition(s) of the characters which are
legitimate words. Like crossword compilation, filtration
has been found to be an important component of efficient
anagrammatic processing. And once again, n-gram
analysis has been found to be useful. The procedure is
similar to those described in the previous section, but the
tested n-grams are variable-free.

For an anagram of length n, the worst case obviously
involves n! transpositions to check. A straightforward
algorithm might work like this. First, one transposes the
anagram into one of the n! materially similar tokens. For
each one, we check the constituent n-grams within the
token, left to right, to determine whether they are legitimate
with respect to the lexicon in use. If an n-gram is found to
be illegitimate, the entire transposition is rejected. When
all n-grams are legitimate, the transposition is compared
with the lexicon. Upon failure, the next transposition is
tried, etc.

Unlike the case with crossword compilation, n-gram
analysis has been found to be sub-optimal for the filtration
of anagram transpositions [6]. The reason is that n-gram
analysis ignores the additional information which a
complete transposition provides. Since there is certainty
concerning the character composition of the actual word(s),
this information can be advantageous. One way of doing
this is by basing the filtration upon the distribution of
vowel and consonant pattems found in words of that
length.

For present purposes, we will assume that a,e,i,o,u and y
are vowels and the remaining characters of the alphabet are
consonants. The theoretical distribution of vowel to
consonant ratios for words of length 6 would be:

V-C Ratio N

6-0 1
5-1 6
4-2 15
3-3 20
2-4 15
1-5 6
0-6 1

while the actual distribution for a particular lexicon might
be

V-C Ratio

6-0
5-1
4-2
3-3
2-4
1-5
0-6

N

0
0
10
17
15
5
0.

We may put this knowledge to work for us in filtering the
anagram transpositions. For example, suppose that we
have an anagram with a 4-2pattern. We know from the
data above that of the 15 possible patterns, only 10 are to
be found in the lexicon. Thus, 33% of the possible
comparisons may be eliminated. While the a priori
advantage of v-c pattern filtration has yet to be determined,
there is empirical evidence which suggests that for smaller

lexicons at least it offers a better average-case behavior
than trigramanalysis [6].

As with crossword compilation, increased efficiency for
lexical matching is the dominant theme in anagram
unraveling. So far, no one has suggested the need for
heuristics.

Palindromes

Palindromes are strings of symbols which are symmetrical
about the center. The most basic form of palindromes are
orthonraphical palindromes, meaning that they have no
meaning above and beyond their symmetry (e.g,
‘ABCBA’). Lexical palindromes are at the next level. A
lexical palindrome is an orthographical palindrome for
which there exists some partitioning into 1eFitimate words
(e.g., ‘REFER’, ‘TEN NE PEN NET’, REVEST AH
THAT SEVER’). Phrasal palindromes are next (e.g.,
‘DIARY RAID’); and finally, at the pinnacle, sentential
palindromes (‘ABLE WAS I ERE I SAW ELBA’, ‘A
MAN A PLAN A CANAL PANAMA’). The beauty of his
last type is that the sentence is formed with an
orthographical ‘joint’. The interesting question for the
computational linguist is whether an efficient procedure
may be found to generate these sentential palindromes.
While we know of no success at this writing, lexical
palindromes have been assaulted, if not conquered [20].

Just as there are an infinitude of orthographical
palindromes, there are an infinitude of lexical palindromes:
simply by adding a palindromic word (e.g., ‘ANNA’) to
each end of a lexical palindrome generates another lexical
palindrome. However, there are only a finite number of
lexical palindromes of a fixcd length with respect to any
given lexicon. This provides an attract research
environment for lexical palindrome study.

As far as we can determine, there has been only one
attempt to develop an effective means for the generation of
lexical palindromes [20]. The simplest strategy would be
to generate palindromes from the Roman Alphabet, and
then to test to see if they are also lexical palindromes. The
main difficulty with this approach derives from the fact that
the generation is at the orthographical level where the
testing is at the lexical level. This means that there will be
an enormous amount of time spent by the system
partitioning and checking mostly unrecognizable output
thereby applying a factorial process to an exponential
output culminating in a combinatorial explosion.

To ameliorate the problem, one might attempt a word-
based approach. This would ensure that the segments
inserted are already lexically correct. For example, we
might insert words, from left to right, until we reach the
middle position, and then append the reversed input to
complete the string. The problem here is that the earliest
lexical insertions may create reversed patterns which defy
lexical partitioning. That is, we will spend too much time
working with unworkable lexical combinations.

One way to avoid this difficulty is to restrict lexical
insertions to those words whose reversals conform to some
acceptable lexical partition. For example, it would be
pointless to insert ‘SEEK’ in the first position of an eight
character palindrome for ‘KEES’ cannot be partitioned in
any lexically meaningful way. This approach may be
further improved if we continuously check the reversed

21 I

strings for acceptability rather than defemng the judgment
until the entire orthographical palindrome has been
generated.

An even more selective strategy is outlined in [203. In this
case, two lists are maintained in processing, the
concatenation of which contains a palindrome. After each
word is inserted, the resulting reversed string is analyzed
and the constraints are determined for the subsequent word.
One of three conditions must obtain: 1) either the reversed
list can be partitioned in such a way that all parts are
already words (even length palindrome), or 2) the reversed
list together with the last character in the forward list can
be so partitioned (odd length palindrome), or 3) the
reversed list can be partitioned so that all parts except the
left-most part are words, and that left-most part is the
ending of some word or other which fits the remaining slot.
This ending is then used to index further search.

Perhaps an example will clarify the procedure. Suppose
that our forward list contains 'AS'. The reversed list will
contain 'SA'. 'SA' is not in the lexicon, but 'A' is. So the
left most part, 'S', is used as an index to select another
word for insertion from the backwards dictionary (perhaps,
'POTS'). Since the lexical insertions are bi-directional the
fail points are driven higher in the search tree than would
be the case with uni-direction insertion. Of course, this
technique works best with two lexicons: a standard lexicon
and one which has all of the words spelled backwards.
However, the resulting efficiencies have at least made the
goal of generating lexical palindromes tractable.

Conclusion

The discussion above has outlined how approximate string
matching may be involved in the automation of various
aspects of word game construction or solution. In the
discussion, we have tried to identify and explicate the
underlying issues in computational linguistics, and suggest
techniques which have been used to address these issues.
As we can see, the two main issues which arise in this
context have to do with lexical processing and heuristics,
issues which arise in a more practical contexts as well
[1,2,4,18]. For an excellent introduction to these topics,
especially as they relate to text processing, see reference
1263.

References

[11 Berghel, H., "Extending the Capabilities of Word
Processing Software through Horn Clause Lexical
Databases", Proceedings of the 1986 National
Comuuter Conference, pp. 251-257, 1986.

[2] Berghel, H., "A Logical Framework for the Correction
of Spelling Errors in Electronic Documents", Info.
Proc. and Mgmt., V. 23, pp. 477-494,1987.

[31 Berghel, H., "Crossword Compilation with Horn
Clauses", The Comnuter Journal, V. 30, N. 2, pp.
183-188.1987.

[4] Berghel, H. and C. Andreu, "TALISMAN: A Prototype
Expert System for the Detection and Correction of
Spelling Errors:, Proc. 1988 ACM Symn. on Small
Systems, pp. 107-1 13, 1988.

[5] Berghel, H. and R. Rankin, "A Proposed Standard for
Measuring Crossword Compilation Efficiency",
The Comuuter Journal [in press].

[6] Berghel, H., R. Rankin and D. Roach, "Efficient Lexical
Processing with V-C Pattern Filtration",
Proceedings of the Third Oklahoma Symposium
on Artificial Intelligence, pp. 149-154,1989.

[7] Berghel, H., D. Roach and J. Talburt, "The Mechanical
Cruciverbalist", PC/AI, Vol. 3, No. 6, pp. 45-47,
1989.

[8] Berghel, H., D. Roach and J. Talburt, "The Logic of
Spelling", PC/AI, Vol. 4, No. 1, pp. 24-27, 1990.

[9] Berghel, H. and C. Yi, "Crossword Compiler
Compilation", The Comuuter Journal, V. 32, N. 3,

[lo] Faulk, R., "An Inductive Approach to Language
Translation", Communications of the ACM, Vol.

[l l] Hall, P. and G. Dowling, "Approximate String
Matching", Comn. Surv., V. 12, pp. 381-402,
1980.

[121 Harris, G., "Generalization of Solutions Sets for
Unconstrained Crossword Puzzles", Proceedings

[in press].

[13] Harris, G. and J. Forster, "On the Bayesian Estimation
and Computation of the Number of Solutions to
Crossword Puzzles", Proceedings of the 1990
Symposium on AEplied Computing [in press].

[14] Harris, G. and J. Spring, "An Efficient Algorithm fro
Crossword Puzzle Solutions", Division of CAD,
Griffith University, Nathan, Australia, 1989
[manuscript].

[15] Mazlack, L., "The Use of Applied Probability in the
Computer Construction of Crossword Puzzles",

pp. 276-280, 1989.

7, pp. 647-653, 1964.

5

Prockdings of the IEEE Conference on Decision
and Control, pp. 497-506, 1973.

[161 Mazlack, L., "Computer Construction of Crossword
Puzzles Using Precedence Relationships",
Artificial Intelligence, V. 7, N. 1, pp. 1-19, 1976.

1171 Mazlack, L., "Machine Selection of Elements in
Crossword Puzzles: An Application of
Computational Linguistics", SIAM Journal on
Comuuting, V. 5, N. 1, pp. 51-72, 1976.

1181 Pollock, J. and A. Zamora, "Automatic Spelling
Correction in Scientific and Scholarly Text",

1191 Rankin. R. "Increasing the Efficiencv of Prolog

CACM, V. 27, pp. 358-368,1984.

L >

Lexical Databases 4 t h N-Gram Bodlean Cubes",
Proc. 1988 ACM Svmp. on Small Systems, pp.
161-166,1988.

212

[20] Rankin, R., H. Berghel and T. Xu, "Efficient
Generation of Lexical Palindromes", Proceedings
of the 1990 ACM Symposium on Small Systems
[in press].

E211 Roach, D., H. Berghel and J. Talburt, "Intelligent
Problem Solving with Strings: New Directions in
Approximate String Matching", PCIAI, Vol. 3,

[22] Roach, D., H. Berghel and J. Talburt, "Multi-level
ASM", PCIAI, Vol. 4, No. 2, pp. 17-19 & 47,
1990.

[231 Smith, G. and J. duBoulav. "The Generation of

NO. 5, pp. 24-27, 1989.

. .

Cryptic Crossword Clues';,'The Computer Journal,
V. 29, N. 3, pp. 282-284,1986.

[24] Smith, P. and S . Steen, "A Prototype Crossword
Compiler", The Comuuter Journal, V. 24, N. 2, pp.
107-111.1981.

[25] Smith, P., "XENO: Computer-Assisted Compilation of
Crossword Puzzles", The Computer Journal, V.
26, N. 4, pp. 296-301, 1983.

[26] Smith, P., An Introduction to Text Processing,
Cambridge, M.I.T. Press, 1990.

[27] Williams, P. and D. Woodhead, "Computer Assisted
Analysis of Cryptic Crosswords", The Computer
Journal, Vol. 22, No. 1, pp. 67-70, 1979.

[281 Wilson, J., "Crossword Compilation Using Integer
Programming", The Computer Journal, Vol. 32,
NO. 3, pp. 273-275, 1989.

213

