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Abstract
The popularity of wireless networking is a function of convenience. It addresses
one of the most important goals in advanced computing technology: mobil-
ity. When viewed conceptually, wireless technology can be seen as having a
contemporaneous, parallel evolutionary path with remote login, distributed, and
nomadic computing in the area of computing and car portable, car and cellular
phones in the area of telecommunications.

This chapter provides an overview of the wireless landscape and the security
mechanisms that have been introduced in an effort to protect Wireless Local Area
Networks (WLANs). It then gives a detailed description of these mechanisms
including a discussion of their inherent weaknesses. The conclusion is there is
no effective WLAN security available in today’s environment.
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1. The Wireless Landscape

Wireless networking is one of the most recent technologies whose usage has ex-
ploded in the last decade. The operational metaphor behind wireless technology is
mobility. The concept of wireless networking dates back at least as far as ALO-
HANET in 1970. While this project is now of primarily historical interest, the online
overview is still worth reading (http://en.wikipedia.org/wiki/ALOHA_network). The
concept of ALOHANET spanned many of the core network protocols in use today,
including Ethernet and Wireless Fidelity (aka WiFi®). ALOHANET was the precur-
sor of first generation wireless networks.

Wireless technologies may be categorized in a variety of ways depending on their
function, frequencies, bandwidth, communication protocols involved, and level of
sophistication (i.e., 1st through 3rd generation wireless systems). For present pur-
poses, we’ll lump them into four basic categories:

(1) Wireless Data Networks (WDNs),
(2) Personal Area Networks (PANs),
(3) Wireless Local Area Networks (WLANs), of which the newer Wireless

Metropolitan Area Networks (WMANs) and Wireless Wide Area Networks
(WWANs) are offshoots, and

(4) satellite networks.

http://en.wikipedia.org/wiki/ALOHA_network
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WDN is a cluster of technologies primarily related to, developed for, and marketed
by vendors in the telephony and handheld market. This market covers a lot of ground
from basic digital cellular phones to relatively sophisticated PDAs and tablet PCs
that may rival notebook computers in capabilities. WDN includes protocols such as
the Cellular Digital Packet Data (CDPD), an older 19.2 Kbps wireless technology
that is still in use in some police departments for network communication with pa-
trol cars; General Packet Radio Service (GPRS) and Code Division Multiple Access
2000 (CDMA2000) which are multi-user, combined voice and data 2.5 generation
technologies that exceed 100 Kbps; and Wireless Application Protocol (WAP) which
provides wireless support of the TCP/IP protocol suite and now provides native sup-
port of HTTP and HTML. If you’re using a cellular phone with text messaging and
Web support, you’re likely using some form of WAP.

PANs began as “workspace networks.” Bluetooth, for example, is a desktop
mobility PAN that was designed to support cable-free communication between com-
puters and peripherals. Blackberry (http://www.blackberry.com) is like Bluetooth
on steroids. It integrates telephony, web browsing, email, and messaging services
with PDA productivity applications. As such it blurs the distinction between PAN
and WLAN.

WLAN is what most of us think of as Wireless technology. It includes the now-
ubiquitous 802.11 family of protocols, as well as a few others. Table I provides a
quick overview of some of the 802.11 protocol space. Note that all but the first are
derivative from the original 802.11 protocol introduced in 1997.

We note in passing that both the 802 and 802.11 landscape is somewhat more clut-
tered than our table suggests. For example, 802 also allows for infrared support at the
physical layer. In addition, proprietary standards for 802.11 have been proposed. In

TABLE I
THE 802.11 PROTOCOL FAMILY

Standard 802.11 802.11a 802.11b 802.11g 802.11n
Year 1997 1999 1999 2003 2006
Frequency 2.4 GHz 5 GHz 2.4 GHz 2.4 GHz ?
Band ISM UNII ISM ISM ?
Bandwidth 2 Mbps 54 Mbps 11 Mbps 54 Mbps 300+ Mbps
Encoding DSSS/ FHSS OFDM DSSS OFDM ?
techniques

“Year” denotes approximate year of introduction as a standard (e.g., 802.11a and 802.11b were introduced
at the same time, though 802.11a came to market later). The two bands used for “WiFi” are Industrial,
Scientific and Medical (ISM) and Unlicensed National Information Infrastructure (UNII). Bandwidth is
advertised maximum. Encoding, aka “spectrum spreading” techniques appear at the physical or link layer
and include frequency-hopping spread-spectrum (HPSS), direct-sequence spread-spectrum (DSSS), and
orthogonal frequency division multiplexing (OFDM). (Source: [2].)

http://www.blackberry.com
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2001 Texas Instruments proposed a 22 Mbps variation of 802.11b called “b+,” and
Atheros proposed a 108 Mbps variant of 802.11g called “Super G.” Further, there
are standards for enhanced QoS (802.11e) and enhanced security (802.11i) that are
actually orthogonal to the traditional 802.11 family in the sense that they deal with
limitations rather than the characteristics of the protocol suite. To make comparisons
even more confusing, there are 802.1x protocols like 802.16 (2001), 802.16a (2003)
that are designed for wider area coverage, the so-called “Metropolitan Area Net-
works” or MANs. The 802.11n specifications are thin as of this writing, although
the current attention is on increasing throughput at the MAC interface rather than the
physical layer.

1.1 The WLAN Environment

WLAN offers many advantages: e.g., the ease and reduced expense of not having
to run cabling through an existing building, communication between buildings, or
just the convenience of not having to find a wall jack to establish a network connec-
tion. But this convenience comes at a price. While great care may have been taken
through the use of firewalls and intrusion detection systems to secure a network’s
connection to the outside world, a WLAN creates another entrance into the network
that is typically behind the firewall.

Wireless signals cannot be easily confined to their area of intended use. In fact,
wireless communications can be monitored and captured from a mile or more away.
And this covert monitoring activity is virtually undetectable.

A number of wireless security mechanisms have been introduced to address these
problems. The first of these is an encryption and authentication standard called
the Wired Equivalent Privacy, or WEP. More recent encryption and authentication
protocols include EAP, WPA, and VPNs. Unfortunately, each of these has security
vulnerabilities [1].

On a positive note, the 802.11i standard includes the Counter Mode/CBC-MAC
Protocol (CCMP). CCMP is based on the Advanced Encryption Standard (AES) and
should provide stronger encryption and message integrity than anything available
now. Unfortunately, since CCMP will require new hardware that is incompatible
with the older WEP-oriented hardware, it will probably be some time before this
security mechanism is widely implemented.

It is important to note that nothing that is covered here isn’t already understood
and put into practice by the hacker and criminal communities. The people in the dark
tend to be law-abiding citizens. It is hoped that the information presented here will
raise awareness so that the defender stands a chance of protecting his digital assets
against WiFi intrusion.
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2. Basic Wireless Security

Some mention should be made of some basic wireless features that are often
described as security mechanisms even though they are actually ineffective as de-
terrents.

(1) Disabling the Service Set Identifier (SSID) broadcast, and changing the name
of the SSID to something other than the widely known default values. This
will only serve to deter the inexperienced or lazy attacker since SSIDs can
still be sniffed from association packets.

(2) MAC address filtering. Although MAC-based authentication is not a part of
the 802.11 standard, it is a feature on many APs. MAC filtering can be easily
bypassed though since the network traffic can be sniffed to determine which
MAC addresses are being used. All an attacker has to do at that point is to
force a host off of the wireless network (or just wait) and then assume that
host’s MAC address.

(3) Protocol filtering. Even if implemented on an access point, the range of attack
vectors is so large at this point, that there are vulnerabilities that apply to
whatever protocols are supported [15].

2.1 Wired Equivalent Privacy (WEP)

WEP is an algorithm that was a part of the original IEEE 802.11 specification
with the design goals of preventing disclosure and modification of packets in tran-
sit and providing access control for the network. It uses the RC4 algorithm from
RSA Security which was first designed in 1987 and kept as a trade secret until it
was leaked on a mailing list in 1994. RC4 is a symmetric cipher, i.e., the key that
encrypts the traffic is the same key that decrypts the traffic. It is also a stream cipher,
meaning that it creates a stream of bits that are XORed with the plaintext (original
data) to create the ciphertext (encrypted data). When the data reaches the other end,
the same stream of bits is XORed with the ciphertext to retrieve the plaintext. RC4
uses a pseudo-random generation algorithm (PRGA) to create a stream of bits that
are computationally difficult for an attacker to discover. This same stream of bits is
reproduced at the other end to decrypt the data. Since RC4 is not supposed to be
reused with the same key, the WEP designers added an Initialization Vector (IV)
which is a value that changes for each packet. The IV is concatenated with the WEP
key to form the WEP seed. Figure 1 outlines this process visually.

When a user inputs a key to configure the client wireless card, he or she must
configure the same key on the opposite end of the communication (most likely an
access point). Users provide either 40-bits or 104-bits of information for the secret
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FIG. 1. The WEP encryption process.

key. While manufacturers may claim that the key is 64-bit or 128-bit, only 40 or 104
bits, respectively, are actually used for data. This remaining 24-bits are the IV which
is pre-pended to the secret key before it is used in the key scheduling algorithm
(KSA). This format is often symbolized by IV.SK, where IV symbolizes the 3 byte
(24-bit) Initialization Vector, and SK symbolizes the 5 byte (40-bit) or 13 byte (104-
bit) secret key from the user. This composite value is the input to the KSA which
converts IV.SK into an initial permutation S of {0, . . . , N − 1}. The PRGA then uses
this permutation to generate a pseudo-random output sequence. The algorithms can
be seen in Fig. 2. Note that all additions are made modulo 256.

WEP contains a number of flaws in the implementation of RC4 that allows an
attacker to completely compromise the intended security. This potential compromise
is so well publicized and so complete, that WEP should never be considered a reliable
form of security [3].

KSA(K) PRGA(K)

Initialization: Initialization:
for i = 0 . . . N − 1 i = 0

S[i] = i j = 0
j = 0

Generation loop:
Scrambling: i = i + 1

For i = 0 . . . N − 1 j = j + S[i]
j = j + S[i] + K[i mod l] Swap(S[i], S[j ])
Swap(S[i], S[j ]) Output z = S[S[i] + S[j ]]

Where— Where—
N = 256 (for WEP) z is the byte used to XOR the
K[x] = value of key (IV.SK) at plaintext

index x

l is the length of IV.SK

FIG. 2. The pseudocode of the Key Scheduling Algorithm and Pseudo-Random Generation Algorithm.
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2.2 Brute Force/Dictionary WEP Cracking
The secret key can usually be entered in hex format or ASCII format. Since a

number of hexadecimal characters are much harder to remember then half as many
ASCII characters, most people will choose a word or phrase that they can easily
remember. This might make the key management much easier, but it also facilitates
a brute force attack. There are utilities that try to decrypt WEP encrypted packets.
decrypt, a utility that comes with AirSnort, is one such tool. It tries a list of words
from a wordlist (aka dictionary) against a saved encrypted packet capture. With each
possible key, it decrypts a packet using that key and computes a checksum on the
newly decrypted data. If the checksum matches the checksum that was transmitted
with the packet, a potential secret key has been found. If that same potential key
works with another packet, the correct secret key has been revealed.

Brute force cracking requires more time and resources to find the correct key than
dictionary attacks. This is the process of trying all possible combinations of values
until the correct key is found. With a 40-bit secret key, there are a total of 240 =
1,099,511,627,776 possible secret keys. If a computer could check 50,000 different
secret keys per second, it would take over 250 days to find the correct key. The
amount of time that would be required to brute force a 104-bit key is measured in
centuries.

The time required to brute force a 40-bit secret key can be brought down to un-
der a minute due to a flaw in the random WEP key generation programs that was
discovered by Tim Newsham [11]. Unfortunately, this flaw has been implemented in
firmware by many wireless vendors.

These programs are supposed to create a set of random keys based upon ASCII
input. The algorithm that is often used by these programs is the Neesus Datacom
key generation algorithm. This algorithm takes a string of ASCII characters as input,
arranges them in a two dimensional array with four characters in a row, and then
XORs all of the column values together in sequence to get a 32-bit output value. The
4 byte (32-bit) output value is then fed through a PRGA which generates the 40-bit
secret keys. See Fig. 3 for a visual representation.

Note that the most significant bit of each ASCII character is always zero and there-
fore the resulting bytes from the XOR operation also have a most significant bit of
zero. This, combined with the PRGA algorithm that is used, only produces unique
keys for seeds 00:00:00:00 through 00:7F:7F:7F. This greatly reduces the amount of
effort required for a brute force attack. To prove this concept, Newsham created the
toolkit wep_tools which will brute force keys that have been generated by this type
of “random” WEP key generation utility.

A utility called WEPAttack also makes claims to WEP cracking efficiency using
both brute-forcing and dictionary attacks against the key. The claim is that only one
WEP encrypted data packet is necessary to start the attack. This is possible because
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FIG. 3. XOR operation performed by the Neesus DataCom key generation algorithm.

each word in the dictionary is treated as the WEP key. WEPAttack uses the IV that is
found in the encrypted data packet and prepends it to the words in the dictionary. This
key is used to find the cipherstream which is XORed against the encrypted packet.
If the decrypted packet starts with 0xAA (the standard SNAP header value), there is
a good chance that the key has been found. More than one encrypted packet should
be used for the processes since not all packets start with 0xAA. However, the chance
that two packets, picked at random, are neither IP nor ARP (both start with 0xAA) is
very unlikely.

2.3 The FMS Attack

The FMS attack is the most well known attack on WEP. It is derived from (and
named after) Scott Fluhrer, Itsik Mantin, and Adi Shamir who published their re-
search findings in a 2001 paper entitled “Weaknesses in the Key Scheduling Algo-
rithm of RC4” [5]. The basis for this attack is a weakness in the way RC4 generates
the keystream. Specifically:

1. The Initialization Vector (IV) that is always prepended to the key prior to the
generation of the keystream by the RC4 algorithm is transmitted in cleartext.

2. The IV is relatively small (three bytes) which results in a lot of repetitions as
the relatively small (16.78 million) number of unique IVs are re-used to encrypt
of packets.

3. Some of the IVs are “weak” in the sense that they may be used to betray infor-
mation about the key.
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This weakness makes it possible, under certain conditions, to recover the input of
RC4 (i.e., the key), knowing its first byte of output. This first byte of output is easy to
determine since the first data to be encrypted in a WEP packet is usually the SNAP
header (as with IP and ARP packets) and this header is almost always 0xAA.

A weak IV has a format of B+3:FF:X where B is the index of the shared key’s byte
currently being guessed, FF is 255, and X can be any number between 0 and 255.

Given a weak IV, the first several steps of the RC4 KSA that affect the leftmost
positions of the table can be computed. There is then approximately a 5% chance
that the remainder of the permutations of the KSA occur in the right part of the table.
There is therefore a 5% chance that the portion of the table that was computed is the
table that will be the input of the PRGA. Since the value determined for this shared
key byte is only accurate 5% of the time, a number of weak IVs (usually about 60)
with varying X’s have to be used to compute guessed values for that byte. The value
that is produced most often has a high probability of being the correct value. This
process is then repeated to recover the remaining bytes of the shared key. As a rule of
thumb, a few million packets generate enough weak IV traffic to recover 40-bit WEP
keys. The attack is linear regardless of the key size so it does not take that much more
traffic to recover a 104-bit key. A very good illustrated description of this process can
be found in [6].

Since the IEEE standard of IV selection was so ambiguous, many wireless vendors
use sequential IV generators that begin with 00:00:00 and wrap with FF:FF:FF. This
is the worst of both worlds. Not only is this procedure guaranteed to generate weak
IVs, but it does so predictably.

WEPCrack (http://wepcrack.sourceforge.net) was the first publicly released tool to
use the FMS attack. Airsnort (http://airsnort.shmoo.com) is much better known and
much easier to use. Since modern WiFi cards and appliances reduce the percentage
of weak IVs that are generated (under the rubric of “WEP+” or “Advanced WEP
Encryption,” etc.), Airsnort is declining in importance as it takes an unreasonably
long time to collect enough packets to break keys.

2.4 Enhancements to the FMS Attack

Subsequent to the original FMS research, a number of people have discovered
that there are more ways that weak IV’s can be used to speed up the WEP cracking
process. “Using the Fluhrer, Mantin, and Shamir attack to break WEP,” Stubblefield
et al. [17] discusses an approach that deviates from the standard FMS algorithm
methodology of finding all the previous values for B before finding the next value.
The authors suggest that weak IVs associated with higher B values can be used to
narrow down the beginning bytes of the secret key. This can be done by testing
different values of the key and checking to see if the decrypted packet has a valid

http://wepcrack.sourceforge.net
http://airsnort.shmoo.com
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checksum. This can be facilitated by making assumptions about the range of possible
values for a WEP key (users will often use ASCII characters).

Another whitepaper, written by David Hulton, “Practical Exploitation of RC4
Weaknesses in WEP environments” [7] describes a number of alternate approaches
for expanding the FMS concepts including additional methods of finding weak IVs
for secret key bytes beyond the first. Hulton claims it would be best to devise an al-
gorithm which can determine whether or not a particular IV can be considered weak.
His algorithm (implemented in a utility called dwepcrack) is shown in Fig. 4:

Using this algorithm, the search time for a weak IV is roughly 1/20 of the time it
would take using the unmodified FMS algorithm. Notice that the line of code that is
bolded tests to see whether the first byte of the IV is the byte of the secret key that
is currently trying to be determined and whether the second byte of the IV is 255.
Hulton includes a number of other tests to determine weak IVs resulting in a shorter
cracking time and an overall smaller number of packets that need to be captured.

x = iv[0];
y = iv[1];
z = iv[2];

a = (x + y) % N;
b = AMOD((x + y) - z, N);

for(B = 0; B < WEP_KEY_SIZE; B++)
{
/*
* test to see if this key would apply to any of the bytes that
* we’re trying to crack.
*/
if((((0 <= a && a < B) ||
(a == B && b == (B + 1) * 2)) &&
(B % 2 ? a != (B + 1) / 2 : 1)) ||
(a == B + 1 && (B == 0 ? b == (B + 1) * 2 : 1)) ||
(x == B + 3 && y == N - 1) ||
(B != 0 && !(B % 2) ? (x == 1 && y == (B / 2) + 1) ||
(x == (B / 2) + 2 && y == (N - 1) - x) : 0))
{
// It is a Weak IV
}

}

FIG. 4. Dwepcrack’s algorithm for determining weak IV’s.
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While these additions to WEP cracking algorithms can help to lower the time nec-
essary to compromise a complete WEP key, they have not been widely implemented.
This could be due to the overall low percentage of WEP enabled devices that are cur-
rently being implemented, or to the popularity of current WEP cracking utilities.
These methods will most likely become more popular as newer devices avoid the
usage of more commonly known weak IVs.

In August 2004, a hacker named KoreK published code in the NetStumbler fo-
rums that outlined expansions to the FMS attacks. These attacks have been im-
plemented in both aircrack and WEPLab, both of which claim to crack WEP in
record time. Essentially, these attacks work much like the FMS attack. The KSA
is run as far as possible while looking at the values of the S array and the known
keystream. Depending on the values that are found, the key bytes can be extracted.
Appendix B contains KoreK’s original code with comments added by the authors.
Since the publication of this code on NetStumbler forums, KoreK has released a
utility called chopper which expands upon this concept.

KoreK has since released another program called chopchop. This program exploits
WEP in a different way to decrypt single packets. When an encrypted packet is cap-
tured, it can be decrypted one byte at a time by making a slight modification and
attempting to retransmit it. The attacker will remove the last byte of the encrypted
packet and replace it with a guess. To test to see if the guess was correct or not,
the packet is sent to the access point. If the access point accepts the message and
rebroadcasts it, the attacker can be sure that the guess was correct. The attacker can
then use this byte and the corresponding cipherbyte to find the plaintext byte. Since
there are only 256 choices for each byte, the packet can be decrypted in a relatively
short period of time.

2.5 Injecting Packets for Faster WEP Cracking

The WEP cracking processes discussed so far require the capture of a large num-
ber of WEP encrypted data packets. For large wireless networks this requirement is
easily met because of the large volume of traffic. However, there are other networks
where the volume of traffic is not sufficient to allow the capture of enough packets in
a reasonable period of time. It is possible to generate the necessary traffic on these
networks by injecting packets to solicit responses. These packets do nothing to help
the breaking of WEP, but the responses from a legitimate device on the network will
increase the probability of generating weak initialization vectors. Some utilities like
reinj and aireplay (part of the aircrack package) do this by capturing ARP requests.
It then turns the packet around and injects it back into the network. Since the access
point can’t tell the difference between the injected packet and the original, the ARP
request and response will give the attacker two more packets to work with. Other
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utilities (WEPWedgie; see Section 2.6) will use ICMP echo requests to a broadcast
address. This could generate echo replies from hosts on the network using a possible
weak initialization vector. It is also possible to use this approach with other types of
packets (TCP RSTs, TCP SYN/ACKs, etc.) [4].

These utilities allow a remote attacker the ability to create traffic on parsimo-
nious networks. Home wireless networks and small offices often are included in this
category. No longer can security professionals claim wireless networks of this size
“secure” due to the amount of traffic. If the traffic does not naturally exist, an attacker
can create it.

2.6 Encrypted Packet Injection

WEP does not have an effective mechanism to ensure data integrity. It does use a
cyclic redundancy check (CRC) which is calculated for the data that is sent over the
network. This verifies that a packet has not become corrupt during transmission but
it does not protect data integrity.

When a packet is sent, its CRC is calculated from the plaintext. The output of the
CRC32 algorithm is a 4 byte value which is called the integrity check value (ICV).
The ICV is appended to the plaintext and encrypted using the WEP algorithm. The
ICV is run again against the data after it has been decrypted by the receiver. If the ICV
value that was sent in the packet matches the value that was calculated by the receiver,
then the packet is considered legitimate. However, due to the nature of WEP and
stream ciphers, it’s possible to create an encrypted packet with a correct ICV, without
knowing the actual WEP key. The attacker must only determine the ciphertext and
plaintext combination for data that is sent with a particular Initialization Vector (IV).

The attacker first takes a legitimate known plaintext and known ciphertext combi-
nation and XORs the two values together to recover the keystream that was used to
encrypt the plaintext. This same keystream is used for all packets that are sent over
the wireless network with the same Initialization Vector and secret WEP key. Since
it is unlikely that the WEP key will be changed in a reasonable amount of time, the
keystream will be the same for all packets using the same IV.

That keystream value is then XORed with the plaintext and ICV that the attacker
wishes to inject into the datastream. The resulting value is an encrypted packet to be
prepended with that same IV and injected on the network. This technique is called
PRGA Injection. An attacker can use a number of mechanisms to recover an en-
crypted packet and its corresponding plaintext value.

Tools have been created that perform injection attacks on WEP encrypted net-
works. reinj was a tool created for BSD that finds what it considers to be a TCP
ACK packet or an ARP request and sends it back onto the network. While this is
technically the injection of encrypted packets onto a wireless network, it doesn’t
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provide the attacker with the capability to customize the data. Another utility, WEP-
Wedgie listens for WEP encrypted packets that are generated during a shared key
authentication. This happens when a client wishes to connect to an access point. The
access point will send the client a nonce which the client encrypts using the WEP
key. This encrypted value is sent back to the access point for verification. If the value
that the access point gets when it encrypts the nonce is the same as the value that
the client returns, access is granted. This process provides a plaintext value and the
corresponding ciphertext that is needed. WEPWedgie can now inject packets into a
wireless network.

This attack can be expanded for even more malicious purposes. Once attackers
gain the ability to inject packets into the wireless network, they can open connections
to the internal servers, even if they are isolated by firewalls. The attacker will inject a
packet into the wireless network asking for a connection to the server. This amounts
to a TCP SYN packet with the source address of a computer that the attacker controls.
The packet will be accepted into the network and sent to the unsuspecting server.
The server will then do its part in opening the connection and send the attacker
machine a TCP SYN/ACK packet. Assuming that the server can send a packet onto
the Internet, it will send the packet through the firewall, onto the Internet and to
the attacker’s machine. The attacker’s machine will then finish the 3-way handshake
and a connection will be established. This approach can also be used to do port
scans against the internal machines, do internal network mapping, etc. Being able
to inject packets into a wireless network is an extremely powerful and dangerous
tool.

2.7 802.1x Authentication

802.1x is a port authentication protocol that was originally created for wired net-
works. Switches, for example, can use 802.1x to authenticate a device before it
allows the device access to a port. Once the authentication process has been success-
fully completed, access is granted to the device. There are three main components to
the 802.1x authentication process: the supplicant, the authentication server, and the
authenticator. The supplicant is the computer or device that wishes to have access on
the network. The authentication server is the computer that performs the authentica-
tion. One of the most common types of servers that perform this task is a RADIUS
server. The authenticator is the device that sits between the supplicant and the au-
thentication server. In the example above, the authenticator is the switch. It is the
point of access for the supplicant (Fig. 5).

Notice that there is two different sessions in Fig. 5. The supplicant starts the
process by attempting to access the network resources. This triggers a request by
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FIG. 5. 802.1x authentication process.

the authenticator for information about the identity of the supplicant. The suppli-
cant provides this information and the authenticator forwards it to the authentication
server. The authentication server then processes this information and usually sends
a challenge to the supplicant through the authenticator. This challenge could be a
nonce which needs to be encrypted or it could be some kind of token. The actual
authentication mechanism is flexible and can vary between implementations. This is
also the place where attacks can occur. When the supplicant responds to the chal-
lenge, the authenticator forwards this information on to the authentication server for
processing. The authentication server then determines whether or not the supplicant
should be granted access [16].

Although this process was originally developed for wired networks, it has been
adopted by the 802.11i committee for use in wireless applications. In a wireless
environment, the supplicant is a wireless client wishing to connect to the wireless
network. The authentication server can still be a RADIUS server, but the authenti-
cator is usually a wireless access point. Since one of the problems with WEP is key
management, 802.1x can be very useful in a WEP environment. Any time a single
key is used for an entire network, there will be security and scalability issues. The
central server can provide clients with different keys, and even require a key change
after a preset amount of time or data transmission. In a wireless environment, this
is especially beneficial because it can change the secret key used by WEP and give
different keys to clients [8].
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2.8 EAP-LEAP Attack

802.1x uses a number of protocols to accomplish its goal of providing further se-
curity for wireless networks. The communication between the authentication server
and the authenticator is logically separate from the communication between the au-
thenticator and the supplicant. Extensible Authentication Protocol (EAP) is usually
used for the authenticator/supplicant communication. EAP was created for point-to-
point (PPP) authentication but has been adopted for use with wireless. EAP itself
does not determine what method will be used to authenticate the supplicant, rather it
allows the use of a server to facilitate the actual authentication. EAP-LEAP is one of
the most popular types of EAP that is used today. It was developed by Cisco and has
been implemented in a number of open-source RADIUS solutions [13].

EAP-LEAP is fundamentally flawed due to it’s usage of MS-CHAPv2. This al-
gorithm, and specifically the way that it was implemented in EAP-LEAP, allows an
offline attack to be used to determine the password. When the usage of EAP-LEAP
has been agreed upon, the authentication server sends the supplicant (by way of the
authenticator) a nonce, or challenge text. Specifically it is an 8-byte random stream
which the supplicant must encrypt. To encrypt the challenge text, the password is
hashed using an NT hash and split up to generate three separate keys. The first key
consists of the first seven bytes of the hashed password, the second key is the second
seven bytes of the hashed password, and the third key is the final two bytes followed
by five NULL values. These three keys are each used to encrypt the 8 byte challenge
text. The three 8 byte results are then concatenated into one 24-byte value and this
value is sent back to the authentication server for verification. Since EAP-LEAP sup-
ports mutual authentication, the process can be repeated in the opposite direction to
authenticate the authentication server with the supplicant.

The problem with EAP-LEAP is that NT hashing does not use “salt.” That means
that the same plaintext value will hash to the same hashed value. So an attacker can
hash a dictionary of plaintext passwords and store the corresponding hash values. If
the password is one of the dictionary words, the hashes will match. Since the third
hashed value that is used as a key to encrypt the 8 byte challenge consists of five
null values, there is really only 216 different possible values for the key. With so few
possibilities, the two bytes can be found in less than a second. At this point, the last
two NT hashed bytes of the password have been recovered. Using the precompiled
dictionary, the attacker finds all hashed passwords where the last two bytes match
what has been found. This usually narrows down the possible passwords to a num-
ber that can be brute forced against the authentication server. Now the attacker can
achieve access to the wireless network.

There are a number of utilities that can perform this attack, the most famous of
which is asleap, developed by Joshua Wright. Leapcrack and leap are two other
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utilities which help an attacker perform this attack against EAP-LEAP authentica-
tion [19].

2.9 EAP-MD5 Attack

EAP requires that EAP-MD5 be implemented to serve as a fallback authentication
mechanism. It has a number of vulnerabilities including susceptibility to man-in-
the-middle attacks, lack of dynamic key distribution, and the plaintext/ciphertext
combination. The EAP-MD5 process is somewhat similar to EAP-LEAP. The au-
thentication server sends a challenge to the supplicant that is then hashed using MD5
and the password. That hashed value is sent back to the authentication server. This
hashed value is then compared to the server’s hash of the challenge text and if they
are equivalent, access is granted.

Since the authentication process happens in only one direction, a man-in-the-
middle attack can be performed against the authenticator. All that is required is a
fake access point with authentication server software installed. When a supplicant
requires access, it contacts the rogue AP instead of the authentic AP.

3. WPA Background and Introduction

Since there have been so many vulnerabilities discovered in WEP, an 802.11i
standard committee was formed to find a new method of securing wireless commu-
nication. As the development of the standard progressed, some parts were ready to
be deployed and other parts were not. In 2002, the Wi-Fi Alliance decided to deploy
the parts that were deemed ready to help alleviate some of the security problems
that existed. The parts that were released were named Wireless Protected Access
(WPA). WPA still uses the WEP algorithm, but it adds a stronger integrity check-
ing algorithm and better key management as in 802.1x. It can be implemented with a
centralized authentication server or using pre-shared keys (PSK), like WEP. WPA of-
fers two things of value: Temporal Key Integrity Protocol (TKIP) and 802.1x. TKIP
is the encryption algorithm that was created to provide more security than WEP.
It is essentially a shell that was placed around the WEP RC4 algorithm to address
the following weaknesses: replay attacks, forgery attacks, key collision attacks, and
weak key attacks. It does this by improving the integrity checking function, adding
initialization vector sequencing rules, and creating a per-packet key.

TKIP uses a master key (MK) which is either distributed using 802.1x or as the
PSK to derive a pairwise master key (PMK). In turn, the PMK is used to derive four
more keys. These four keys are used during various parts of the encryption. One of
the keys is called the temporal key (TK), which is primarily used for the encryption
of data that is sent over the wireless link. The TK is XORed with the sender’s MAC
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FIG. 6. Graphical diagram of TKIP Encapsulation. Note: MSDU is the MAC Service Data Unit and
MPDU is the MAC Protocol Data Unit.

address, which is then mixed with a sequence number to produce a key that is used
as input to the previous WEP algorithm. By adding all the extra steps the key is now
much more secure against attack because it now depends on time and the sender’s
MAC address. TKIP also uses a sequence counter to prevent replay attacks and a
Message Integrity Check (called MIC or Michael) to prevent message modification.
Along with the sequence number, the source and destination addresses are added.
Michael is also a one-way hash function rather than a simple linear CRC. This adds
security to the algorithm because integrity verification is extremely difficult to forge.
Figure 6 provides a graphical representation of TKIP [13,18].

More recently, the Wi-Fi alliance has announced the ratification of WPA2 which
completely stops the use of WEP as an underlying protocol. Instead it uses the much
stronger AES algorithm. As of this writing, WPA2 using AES does not share the
same vulnerabilities as the original WPA.

3.1 The WPA-PSK Attack

There are two primary ways that TKIP can be used. The more secure way is to use
802.1x to distribute the keys and keep track of key management. The other way is to
provide the client and access point with the same pre-shared key which is used as the
pairwise master key (PMK) in the TKIP process. Although this shares many of the
key management problems that WEP had, it does offer some “security through ob-
scurity.” One of the problems with TKIP is that if an attacker can determine what the
PMK is for any one of the wireless clients, he or she can gain access to the network.

Researcher Robert Moskowitz discovered a problem with the WPA-PSK imple-
mentation when short passphrases are chosen [10]. When a pre-shared key is used,
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it is hashed with the SSID and the SSID length to create a 256-bit PMK. This key
is then used to derive all the other keys that are used in the TKIP algorithm. The
pre-shared key is appended with the SSID and the SSID length which are then fed
into the hashing algorithm defined by the PKCS #5 v2.0: Password-based Cryptogra-
phy Standard. The string is hashed a total of 4096 times to create a 256-bit Pairwise
Transient Key (PTK) that is used to derive all the other keys used in the algorithm.
Moskowitz states that the 802.11i standard declares that there are approximately 2.5
bits of security per PSK character. The formula becomes: 2.5n + 12 bits = Security
Strength in bits, where n is the number of characters in the pre-shared key. This
means that a typical password of 10 characters will only provide 37 bits of security.
Because of this, Moskowitz claims, a dictionary attack on the hash can be performed
to recover the password.

Recently a utility called coWPAtty has been released which uses a hash compar-
ison based attack to recover the pre-shared key. coWPAtty captures the four way
handshake authentication packets that are sent between the access point and the
client. In these packets, coWPAtty finds the SSID of the network, the addresses of
the access point and the client, and the nonces sent between the two parties. The
SSID information and the passphrase from the dictionary are used to find a PMK.
Using the other information from the exchange, the PTK is found. Using the PTK,
the attacker can try to decrypt a message and see if the integrity check value found
in the packet matches the calculated value. If so, the passphrase has been found. If
not, the next passphrase in the dictionary is tried.

4. Other Attack Modes

4.1 VPNs: Point-to-Point Tunneling Protocol

A Virtual Private Network (VPN) allows an apparent “private” connection be-
tween two remote computers or networks. This is achieved by encrypting the traffic
together with some sort of authentication. VPNs can be used by small office/home
office users as well as large corporations.

Several standards have been developed to implement VPNs. One of these is the
Point-to-Point Tunneling protocol (PPTP). This protocol allows a remote user to
connect to another network using a VPN and it assures, or at least tries to assure,
that the network that has been created is private. PPTP was created as an extension
to point-to-point protocol (PPP) where dial-up users could connect to their Internet
service provider (ISP) and then create a secure connection to the VPN server. Since it
was pioneered by Microsoft, among others, PPTP is relatively simple to configure on
Windows hosts and servers. As a result, a large number of VPN networks support-
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ing PPTP are Windows networks. Like most other VPN protocols, PPTP employs
authentication and encryption.

Wireless networking has adopted VPN protocols to add encryption and authentica-
tion security to its communications. Since WEP has been completely compromised
and WPA has only recently been released as an upgrade to wireless devices, networks
had to come up with another way to provide security. VPN’s helped to fill this gap.
Legitimate clients could be configured to connect to the wired network through a vir-
tual private network which would encrypt the data that was being transferred. In this
manner, wireless sniffers would only be able to capture encrypted data, which would
then need to be decrypted before it became useful. Furthermore, the authentication
process would help to shut out those people wishing to connect with the wireless
network without legitimate access credentials [12].

Microsoft’s original PPTP specified the use of Microsoft Challenge Handshake
Authentication Protocol (MS-CHAP) for authentication. The design allowed some-
one to connect to a server, receive authentication based upon a password and gain
access to the network resources. When a client connects to the network, it asks
the authentication server for a login challenge. The server responds by sending the
requesting client an 8 byte challenge nonce. The client then uses the LAN man-
ager hash of the password that it has stored to derive three DES (Data Encryption
Standard) keys. These keys are used to encrypt the challenge that the server sent.
Each encryption results in an 8 byte encrypted string. All three encrypted strings are
then concatenated to create a 24-bit reply. This same process is repeated with the
Windows NT hash of the password. These two 24-bit blocks are sent to the server
where they are compared. The server uses the stored client’s password to decrypt
the replies. If the decrypted blocks match the original challenge, access is granted.
This process was used in the PPTP until vulnerabilities were found that compromise
the authentication process. When these vulnerabilities became widely known, Mi-
crosoft re-worked the process and implemented a new version of MS-CHAP which
was supposed to fix the problems that had been discovered.

MS-CHAP version 2, as it became known, added security to the process in the
following ways: it stopped the use of the LM (LAN Manager) hash, introduced mu-
tual authentication, replaced change password packets, and updated the encryption
keys. To do this, it added a number of steps to the authentication process. When the
client machine asks for a challenge, the server responds with a challenge of 16 bytes.
The client then comes up with a 16-byte challenge itself which is called the “Peer
Authenticator Challenge.” The client then uses SHA-1 to hash the concatenation of
the challenge from the server, the Peer Authenticator Challenge and the client’s user-
name. The first 8 bytes of the result then become the 8-byte challenge. Much like
its predecessor, the 8 bytes are encrypted with the Windows NT hashed value of the
password. This generates a 24-byte reply that is sent to the server where it is com-
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pared. To provide mutual authentication, the Peer Authenticator Challenge is sent to
the server, where the server concatenates it with the 24-byte response from the client
and the string “magic server to client constant.” This value is hashed using SHA to
generate a 20-byte result that is then concatenated with the original challenge that
was sent to the client and the afore-mentioned string padded, if necessary, to force
more than one iteration and then hashed once again with SHA. This value is sent
back to the client where it can be verified. If all values match, the session has been
authenticated. While MS-CHAPv2 is much more complicated than MS-CHAPv1, it
does very little to add to the security [14].

4.2 Attacks on PPTP

The attacks on PPTP are predominately attacks on the MS-CHAP authen-
tication. As mentioned above, this is easier to do with the older version of
MS-CHAP. In this version, a number of attacks were possible. One of the at-
tacks involved spoofing a message from the server telling the client to change
his or her password. If the client did change the active password, the password
hashes could be picked up and cracked using a program such as L0phtcrack
(http://www.insecure.org/sploits/l0phtcrack.lanman.problems.html). It was also pos-
sible for password cracking utilities, like L0phtcrack, to take advantage of the fact
that the LM hash was being sent along with the NT hash. The LM hash is extremely
easy to break and then could then be used to crack the NT hash and recover the
password. With the password, an attacker could completely spoof the authentica-
tion process. Utilities such as anger (http://www.securiteam.com/windowsntfocus/
2TUQBR5SAW.html) perform the attack on MS-CHAPv1 enabled PPTP VPNs. It
collects the challenge and response packets that are exchanged for use in a cracking
utility and it also provides the active attack using the change password messages.

In MS-CHAPv2, the change password message was altered to eliminate the vul-
nerabilities that tools like anger took advantage of. Since the LM hash is no longer
sent along with the NT hash, it is more difficult to break. That is not to say that it is
secure. The attack that can be performed on MS-CHAPv2 is described in the “EAP-
LEAP” section. Ettercap (http://ettercap.sourceforge.net) is another utility that can
be used to exploit weaknesses in PPTP. It has a number of plugins which automate
the process of recovering passwords from PPTP MS-CHAP authentication.

4.3 Denial-of-Service Background and Attacks

Denial of service (DoS) and distributed denial of service (DDoS) attacks can ren-
der networks useless and are some of the hardest attacks to thwart. Though computers
and networks have become faster and more reliable, they still have practical limits.

http://www.insecure.org/sploits/l0phtcrack.lanman.problems.html
http://www.securiteam.com/windowsntfocus/2TUQBR5SAW.html
http://ettercap.sourceforge.net
http://www.securiteam.com/windowsntfocus/2TUQBR5SAW.html
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All available network bandwidth may be easily consumed by DoS and DDoS attacks,
whether the network is wired or wireless.

The network clients count on the ability to access network resources. It is gen-
erally easier to perform a DoS attack on a wireless network than it is on a wired
one. 802.11 networks broadcast data over a limited range of radio frequencies. All
wireless networks within range compete for those frequencies. Attackers can take
advantage of this fact by creating signals which saturate the network resources. This
can be done with a powerful transmitter that broadcasts interfering signals or by low-
tech approaches to RF-jamming like placing metal objects in microwaves that use the
same frequency.

Other attacks can be performed at the link layer with disassociation and de-
authentication frames that control the communication. If such frames were spoofed,
connections could be manipulated without consent. Programs such as FakeAP
(http://www.blackalchemy.to/project/fakeap), Void11 (http://forum.defcon.org/
showthread.php?t=1427), and File2air (http://sourceforge.net/mailarchive/forum.
php?thread_id=3164707&forum_id=34085) perform such attacks.

One strategy would be to send an authentication frame with an unrecogniz-
able format which would cause the client to become unauthenticated because the
access point would be confused. This attack has been implemented in the tool
fata_jack (http://www.networkchemistry.com/news/whitepaper.pdf) which is meant
to be used with AirJack (http://sourceforge.net/projects/airjack/). It sends an authen-
tication frame to the access point with the sequence number and the status code both
set to 0xFFFF. This frame is spoofed so that the access point believes it comes from a
node that has already connected. This results in a fractured connection. If this attack
is repeated, the real client will no longer have the ability to connect to the access
point.

When a wireless client associates and authenticates with the access point, the ac-
cess point must store information about the client in an internal state table. This
includes the client’s MAC address, IP address, etc. Since the memory of the ac-
cess point is finite, it is possible to fake enough connections that the state table
overflows. Depending on the access point, this could produce a crash or lock-up
thereby blocking legitimate future authentications. Either way the attacker has suc-
cessfully terminated the wireless connection. Joshua Wright wrote a Perl script
called macfld.pl (http://home.jwu.edu/jwright/perl.htm) that will perform this attack.
It works by flooding the access point with a large number of MAC addresses. Before
WPA was implemented, the way that 802.11 checked the integrity of the packets that
were received was through the CRC. If the CRC didn’t match the value that was
calculated by the wireless device, the packet was dropped. If, on the other hand, the
packet was received correctly, an acknowledgement frame was sent so the sender
could delete the transmitted frame from its send queue. This can be exploited by cor-

http://www.blackalchemy.to/project/fakeap
http://forum.defcon.org/showthread.php?t=1427
http://sourceforge.net/mailarchive/forum.php?thread_id=3164707&forum_id=34085
http://www.networkchemistry.com/news/whitepaper.pdf
http://sourceforge.net/projects/airjack/
http://home.jwu.edu/jwright/perl.htm
http://forum.defcon.org/showthread.php?t=1427
http://sourceforge.net/mailarchive/forum.php?thread_id=3164707&forum_id=34085
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rupting a frame as it was transmitted so that the receiver would drop it. The attacker
could then spoof an acknowledgement from the receiver saying that the frame was
successfully received. The sender would then delete it from the queue and the frame
would disappear from the datastream.

While DoS attacks don’t allow an attacker to steal data or get access to the net-
work, it does create significant chaos to the network resources. It is very difficult to
stop and has disastrous consequences on affected networks.

4.4 Man-In-The-Middle Attacks
An effective man-in-the-middle (MITM) attack is one in which the attacker posi-

tions him/herself between the victim and the device with which the victim is trying
to communicate. In this capacity, the attacker can control the information between
the two devices. All traffic is re-routed through the attacker’s computer where it can
be manipulated or simply inspected. The attacker can then gather login information
such as keys and passwords. In a wireless environment, the situation is more threat-
ening because information that is transmitted over a wireless network is by definition
available to all who have the ability to translate the RF signals to data. This might
involve the injection of malicious code into the datastream to further compromise of
the network and network nodes.

In the infrastructure mode of wireless networking, clients or stations all con-
nect to central access points. One MITM strategy is to spoof an access point by
de-authenticating and disassociating a client, neutralizing the AP with a DoS, and
then re-authenticating the client with a clone under the control of the attacker.
A number of MITM attack tools are widely available. Quite often the setup con-
sists of a software access point and DoS software. An attacker’s computer would
usually have two separate wireless cards to handle both jamming and cloning func-
tions. Some of the software access point programs that are available are: HostAP
(http://hostap.epitest.fi) and HermesAP (http://hunz.org/hermesap.html).

5. Conclusion

It has been said that Wireless Networks will never be secure as long as radio
frequencies fail to observe property lines. The validity of this claim lies in the
fact that the physical security of the communication technology is for all intents
and purposes absent in wireless environments (cf. also [9]). Though the physical
security of a building is not a fault-proof barrier, it is at least a practical one. Wire-
less technology, even if properly configured, is not even a practical barrier. Even
the most risk-averse can “sniff” transmissions with little chance of detection by
using free software that is easily found on the Internet. The plain truth is that

http://hostap.epitest.fi
http://hunz.org/hermesap.html
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wireless technology encourages digital eavesdropping. The World Wide Wardrive
(http://www.worldwidewardrive.org) and Wigle (http://www.wigle.net) Websites are
obvious illustrations. Wigle maintains a database of nearly four million active wire-
less networks in its online database. The World Wide Wardrives are network discov-
ery contests.

In this chapter we have sought to identify some of the wireless insecurities that
loom largest in today’s increasingly wireless world. To the inattentive, the deploy-
ment of wireless can create the loss of trade secrets, the loss of personal privacy, theft
of services, and unwitting participation in information warfare. For the attentive, the
watch phrase must be “danger lurks within.”

Appendix A: Wireless Security Utilities by Operating
System and Function

Utility name OS Use

WEPcrack Any platform (if Perl is available) Finding WEP keys
AirSnort Linux, Windows Finding WEP keys
dwepcrack BSD Finding WEP keys
reinj BSD Packet Injection tool
WEPWedgie Linux Packet Injection tool
wep_tools Linux Finding WEP keys
asleap Linux, Windows Finding LEAP passwords
Leapcrack Any platform (if Perl is available) Finding LEAP passwords
leap Linux Finding LEAP passwords
L0phtcrack Windows Password cracking
ettercap Linux
fata_jack Linux Denial of service
macfld.pl Linux Denial of service
dinject Linux Denial of service
airjack Linux Drivers for MITM, DoS, etc.
File2air Linux Denial of service
Void11 Linux Denial of service
omerta Linux Denial of service
HostAP Linux Software Access Point
HermesAP patch Linux Software Access Point
WPA Cracker Linux WPA-PSK password cracking
FakeAP Linux, BSD Random AP frame generation
WepAttack Linux Enhanced WEP cracking
aircrack Linux Enhanced WEP cracking
chopchop Linux Packet by packet decryption
chopper Linux POC WEP cracker
coWPAtty Linux WPA cracker

http://www.worldwidewardrive.org
http://www.wigle.net
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Appendix B: KoreK’s New WEP Cracking Code

/*
This code was written by KoreK and published on the

NetStumbler.org forums
(http://www.netstumbler.org/showthread.php?t=11869)

*/

/* This code runs the KSA algorithm */
for (i=0; i<256; i++) S[i]=i; /* initialize the S[]

array */
for (i=0,j=0; i<p; i++) /* run the loop until the

unknown byte */
{

j=(j+K[i & 0x0f]+S[i]) & 0xff;
swap(S+i,S+j);

}
/* at this point, the attacks can be run. Depending on how
the weak IVs setup the S[] array, we can extract

information about the unknown key byte */
/* Original FMS attack which has a 5% chance of working */
if ((S[1] < p) && ((S[1]+S[S[1]]) == p))
{
jp=o1; /* o1 is the first byte of the keystream (z) */
stat1[(jp-j-S[p]) & 0xff]++; /* extract the info and

keep track of it */
}

/* The following attacks were developed by KoreK and work
in much the same way.

That is, depending on how the S[] is setup, the values
give away information about the unknown key byte.

*/

/* Second type of attack -- 13% chance of working */
if (S[1] == p) /* S[1] is equal to the byte location we’re

looking for */
{
for (jp=0; S[jp]!=0; jp++); /* find the first index, i,

where S[i] isn’t 0 */
if (o1 == p) /* if the unknown key byte is the same

as the first byte of the cipher (z) */
{
stat2[(jp-j-S[p]) & 0xff]++; /* extract the info and

keep track of it */
}

// for statistical purposes
pstat2[(jp-j-S[p]) & 0xff]++;
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}
/* A third attack -- This one works if the second byte of

the cipher (z) is 0, the value of the S[] array at
location p (the unknown key byte were looking for) is 0,

and the third (index=2) element of the S[] array isn’t
zero */

if ((o2 == 0) && (S[p] == 0) && (S[2] != 0))
{
stat3[(2-j-S[p]) & 0xff]++; /* extract the info and

keep track of it */
}

// and two more (well there are still about 10 of ’em left:)
/* The next two start with the same requirements. The

second element (index=1) of S[] must be greater than the
value of the unknown key byte we’re searching for and

the second (index=1) element of S[] plus the third
(index=2) minus the value of p (the unknown key byte
we’re searching for) must be zero

*/
if ((S[1] > p) && (((S[2]+S[1]-p) & 0xff) == 0))
{
/* once this condition is met, one of two more

conditions are needed to qualify */
/* The first is the second byte of the keystream (z)

should be equal to S[1] */
if (o2 == S[1])
{
/* Now find the first value in the S[] array that

doesn’t have a value
of S[1] - S[2]. Save that index

*/
for (jp=0; S[jp] != ((S[1]-S[2]) & 0xff); jp++);

/* As long as that index isn’t 1 or 2, we can do an
extraction and save it */

if ((jp!=1) && (jp!=2)) stat4[(jp-j-S[p]) & 0xff]++;
}

else
{
/* The other option is to see if the second byte of

the keystream (z) is
equal to 2 minus the third value in the S[] array

(index=2)
*/
if (o2 == ((2-S[2]) & 0xff))

{
/* Find the first index of the S[] array where

the value isn’t the same as the second byte of
the keystream (z)*/
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for (jp=0; S[jp] != o2; jp++);
/* As long as that index isn’t 1 or 2, extract

the byte and save it */
if ((jp!=1) && (jp!=2)) stat5[(jp-j-S[p]) & 0xff]++;
}

}
}
// inverted attack
/* This attack is useful in determining false positives. As

the byte values get placed in the stat6[] bin, there is
a chance that that value is not correct. KoreK placed a

threshold on this at 32. If any byte appears in
the stat6[] bin more than 32 times, it must not be the right
value. These tests are pretty straight forward. Just
remember that o1 is the first byte of the keystream.
*/
if (S[2] == 0)

{
if ((S[1] == 2) && (o1 == 2))
{
stat6[(1-j-S[p]) & 0xff]++;
stat6[(2-j-S[p]) & 0xff]++;
}

else if (o2==0)
{
stat6[(2-j-S[p]) & 0xff]++;
}

}
if ((S[1] == 1) && (o1 == S[2]))
{
stat6[(1-j-S[p]) & 0xff]++;
stat6[(2-j-S[p]) & 0xff]++;

}
if ((S[1] == 0) && (S[0] == 1) && (o1 == 1))
{
stat6[(-j-S[p]) & 0xff]++;
stat6[(1-j-S[p]) & 0xff]++;

}
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