
‘Tuning’ an ASM Metric:
Study in Metric ASM OptimizationA Case

t Hal Ber~hel. $ David Roach
$ George B;logh,” $ Carroll Hyatt

T University of Arkansas
$ Acxiom Corporation

Abstract

Wc present an approximate string matching case study. An
optimized version of the edit distance algorithm is described
which has proven more accurate for a particular commercial
application than the existing (benchmark) algorithm. The
cvoluhon and nature of the optimization are detailed and test
results are presented.

Introduction

String matching refers to the activity of associating strings of
symbols with one another. fiuct String Matching (ESM) refers
to the set of proee-dures which associate identical string tokens
with one another [1]. Approximate String Malching (ASM)
refers to a set of procedures which associate non-identical
strings with one another on the basis of some criterion (or set of
criteria) of similarity [2]. Classical Approximate String
Makhing is the traditional ASM approach which requires that
each symbol be nondczomposabie. To illustrate, classical ASM
on strings of text would not analyze the properties of the
symbols (e. g., symbol set from which they arc drawn, typeface
and size, etc.). Historically, most Classical ASM has been
probabi&Jic in the sense that the result of string comparison
was an estimate of likelihood that the two strings were the same.
In contrast to probabilistic methods, aiomalic methods [3][4]
directly encode the relevant definitions of similarity and thereby
have uniform match probabilities of 1. A third method,
comprised of edit distance algorithms, determine the minimal
number of editing steps which transpose one string into another.

Any similarity relation which may exist betwtzn strings may be
conveniently described in terms of Faulk categories [5]:
posi~ional similarity, or the degree to which matching symbols
sre in the same position in their respective strings [6]; ordinal
similarity, or the degree to which the matching symbols are in
the same order [7J; and rnaterkd sinrih-w-ity, or the degree to
which two strings are made up of the same symbol tokens [8-
13]. Algorithms may, and frequently do, rely on one or more of
these categories. Those which use only one category of
mess urcmcnt are called single-relation measures, while others
are nruiIiple-relalion measures.

The advantage of single-relation similarity measures for ASM
applications is that the algorithms are usually straightforward
and easy to implement. However, this advantage comes at a
considerable expense: single-relation measures only look at one
aspect of similarity and, as a consequence, are limited to
relativcl y unsophisticated applications. Beeause of this, multi-
rclation measures have dominated ASM research since the mid-
1970’s.

Two major categories of multi-relation techniques exist: metric
and non-metric. Metric techniques are real-valued difference
functions which satisfy, among other things, the property of
triangular inequality

Permission to copy without fee ail or part of this matarial ia
granted provided that tha copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and ita date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otharwise, or to republish, requires a fee
and/or specific permission.
@1992 ACM O-89791.502.X/92/0002/0131 ...$1.50

(i.e., if string 1 and string 2 are different as are strings 2 and 3,
then the difference between strings 1 and 3 is less than or equal
to the sum of the other differences). One popular metric ASM
tuhnique is the Levenshtein method [14], which has been
applied extensively (e. g., [15][16]; see also [2] and [17J). Non-
mctric techniques arc also quite popular. One leading non-
metric teehnique is n-gram anafysis [4][7][18][19[20].

As wc mentioned in the first paragraph, classical ASM has been
based on approximations or estimates of similarity. In the mid-
1980’s, another automated approach was developed by Berghel,
et al [3][4]. This method direetly encodes the set-theortiical
definition of similarity in use into the computer program within
a logic programming paradigm. The advantage of this approach
is that it is maximally effedive as measured by standard
information-theoretic measures [21][22]. That is, it doea not err
in adjudging similarity, however it is known that this aectsracy
may come at the expense of efficiency when implemented within
a logic programming paradigm.

In this paper, we report on a case study in ASM optimization
based upon the Levenshtein metric.

The Levenshtein Metrie

An ASM similarity measure is a real-valued difference function,
d, over character strings, which satisfies the following
conditions

d(sl ,s2) >0
:] d(sl ,s2) = 0 <-> SI=S2
3) d(sl ,s2) = d(s2,sl)
4) d(sl ,s2) + d(s2,s3) > d(sl ,s3)

for arbitrary character strings s 1,s2,s3.

A popular similarity measure which is both multi-relation and
metric is the so-called ‘Levenshtein Metric’, named atler the
pioneer in coding theory who first suggested ita use [14]. This
measure has been applied to spefling correction by [1S][16].
We now describe this teehnique based upon the presentation in
Hall and Dowlirsg [2].

Let d(ij) be an multi-relation measure of similarity with respect
to strings S1=ctez...ci and Sz=c’lcz...j’j. We defuse it
recursively as follows:

d(O,O) = O
d(ij) = min[d(ij-1) + 1,

d(i-lj)+ 1,
d(i-1 J-1) +v(ci,c’j),
d(i-2J-2) +v((ei-I ,c’j) +v(cj,c’j-1) + 1]

where,

‘@’cxo ‘-> Ci= c;’andV(e,,Cj)–l <->ei+cj.

In this case, we extract a measure of similarity between two
strings by creating a dinxtcd graph for all nodes (i j), with

131

horizontal and vertical edges weighted 1 (the penalty for a
mismatch) and the weights of diagonal edges determined by v
(see Figure 1).

A

v

r?.

R

Y

Figura1: MatrixPaths

GA RVEY

Intuitively, since penalties are cumulative, the more dissimilar
strings will have the longest paths. Since the difference
measure, d, satisfies conditions 1)-4), above, it qualifies as a
legitimate metric.

Note here that the terms of the minimization function
amwoximate the Damerau condhions as set forth in [23] (i.e.,
string difference in terms of one missing character, one
additional character, a substitution of a chamcter and
transposition of two characters). To illustrate, assume that the
shortest path weight is 1 for two strings whose lengths differ by
1. Futiher, assume that thk path weight resulted from the
minimizing term d(i-1 .j) + 1. We would take this to mean that
the shofier string is related to the longer by accidental omission
of a chamcter.

Objective

The objective of this research was to develop methodological
and ~roceduml guidelines which could regulate the ‘tuning’ of
metric ASM algorithms so that they could equal or exced the
effectiveness of other generic ASM algorithms with respect to a
test dataset.

Specific details of the test dataset and benchmark algorithm are
irrelevant to this repofi since our objective is the development of
guidelines which would apply of ASM algorithms as such and in
general. The dataset of intereat consisted of 2,500 pairs of last
names. The names in the name-pair were slightly different from
one another. For example, one might be ‘Vareha’ and the other
‘Vahera’. For each pair, a (manual) determination was made
whether the strings were sufficiently similar to justify the
conclusion that one might likely be a corruption of the other.
The determination was 3-valued: ‘definitely a match’, ‘?’ and
‘definitely not a match’. Then the performance of the
benchmark algorithm was compared with these evaluations.
The algorithm’s output was also 3-valued: ‘yes’, ‘?’ and ‘no’.
Obviously, for each namepair nine situations could result.
There was no variable weighting assigned to a mismatch,
assigning a ‘yes’ with a ‘no’ was penalized the same as
asaigning a ‘?’ to a ‘yes’.

Figure 2 assesses the accuracy of the benchmark algorithm in
terms of these nine possibilities as measured by the number of
mismatches. The legend identifies the patterns that correspond
to the conclusions of the algorithm. For instance, the blackened
area represents the number of instances where the algorithm
said there was a match. The other attems correspond to the

fnumber of instances in which the a gorithm said there was a
mismatch or a questionable case. The x-axis represents
percentages of the algorithm’s conclusions that were Y’s, N’s,
and ?’s. These are plotted against the three categories of
manual responses on the y-axis. For example, the upper bar

Figure2: Effactivmess of benchmark elWfithm by
calegory

~N
c

j?

A
Ly

Oloti 30 40 !ioabioioeolixl

PERCENTAGE

indicates that the algorithm: (1) says N when it should say N =
79% of the time, (2) says ? when It should say N = 19% of the
time, and (3) says Y when it should say N * 2% of the time.
The other two bara compare the algorithm’s output to the
expected outputa of? and Y, respectively.

We describe the geneml procedure which enabled us to ‘tune’
the Levenshtein metric so that the effectiveness exceeded the
benchmark algorithm. We refer to the resulting algorithm as
TM (’tuned metric’).

Methodology

Figure 3 identifies the mnge of options considered in the search
for a more effective ASM hhnique.

Figure& M@r DecMon Points

Q(1..uulwMJl

12!Ek_l

mMEW” ClNcN~

c12.VALUBD m3.vAKe9

1
I f

m4 mlm#naJ Clnmmntm

Only Classical ASM techniques were considered since axiomatic
procedures have so far only been implemented as declamtive
(vs. proceduml) progmms, and thus have such different
performance charactcriatics that comparison would be
problematic.

Algorithms representing all three single=measure techniques (see
introduction) were considered, although they me not shown in
the figure. While singkelation measures may offer
advantages, they must be used with caution, On the one
extreme, material similarity tends to be too ‘loose’ (anagmms

132

arc materially similar, for example), while on the other,
positional tends to be too restrictive (‘abedef’ and ‘bcdef are
totalIy dissimilar, positionally). The ampromise, ordinal
similarity, has similar problems (’wilson’ and ‘wsn’ are similar).
For these reasons, single-relation measures are usually most
appropriate in special-purpose applications for which the nature
of the string differences is well understood, The application
under discussion was not such an application.

The properties of a metric algorithm, particularly triangular
inequality, were needed for further processing. As a component
of a VLDB system, the ASM routines which we developed had
to provide output scores which were amenable to fuzther
partitioning of the data. Metric ASM algorithms make it
possible to partition the data without a priori knowledge about
orthographical make-up (vs., e.g., n-gram analysis which
derives its utility fmm the non-uniform distribution of n-grams
in the data which must be known in advance). In the present
context, all ASM activity must be done ‘on the fly’.

Thus, we compare-d the Lcvenshteirt algorithm (see above) to
the benchmark algorithm. Implemented according to standard
practice [2][15][16], the Levenshtein algorithm compared strings
with respeet to omission, insertion, substitution, and
transposition of characters, Both algorithms were initially set up
to return a binary match value (Yes or No). In this mode, it is
trivial to optimize algorithms in terms of critical threshold: the
cutoff point is adjusted to maximize agreement. On this basis,
the Levenshtein algorithm had a slight edge in terms of accuracy
(69% correet to 63%).

However, manual comparison of the results with the test dataset
indicated a major problem with the two-valued approach: the
accuracy could not appreciably increase unless both algorithms
could better distinguish bdween degrees of similarity. On the
two-valued account, ‘a miss was as good as a mile’. However,
the test dataset revealed many cases of very similar strings
which differed in subtle ways which were not detectable by the
algorithms. In order to catch such pairs it was decided to
concentrate on only three-valued variations of the algorithms
(Yes, No and Ma be). The advantage was that as long as a

{high percentage o the problematic string pairs were flagged as
possible matches, futiher processing (depending upon the
application and context) could be used to resolve the matter.
The alternative would be to continuously tune the algorithms to
accommodate each new subtlety, which would both be
impractical and reduce the efficiency of the programs.

In their ternary versions, the accuracy advantage shifted (69%
for the benchmark algorithm and 65% for Levenshtein), but did
not increase overall. Once again, visual inspection was called
for. Examination revealed that the nature of the remaining
failures were such that a significant fraction could be overcome
by means of two simple adjustments. It was found that by
normalizing the match vaiues with respect to the lengths of the
strings (so that a ontiharacter difference between strings of
len h two would be penalized more than a one-character

rdif erence between strings of length ten) and by handling
truncations (e.g., WILL vs. WILLIS) independently of the ASM
algorithms through pre-proeeasing, the overall accuracy
increased by 10% for both systems. It was now simply a matter
of refinement.

The benchmark algorithm is also an multi-relation ASM
teehnique which is three-valued and employs normalization and
truncation according to the same algorithm. Although it was not
a concern, we found that the general orientation of the
benchmark algorithm was prudent: we were unable to fmd
alternative orientations (i.e., with respect to Figure 3) which
were more effective.

Having determined that within the range of our comparisons the
Levenshtein algorithm was the most effective alternative to the
benchmark algorithm, the next objective became optimization.
Levcnshtein metrics have two parameters which ean be tuned.
First, variations in the penalty set are possible. These values

weigh the character differences according to the nature of the
difference. In its standard form, the Levenshtein algorithm (cf.
[2]) recognizes missin$, extra, substituted and transposed
characters (classical typutg errors) and penalizes them equally
with unity (i.e., the standard penalty set is <1,1,1,1>,
corresponding to missing, extra, substituted and transposed
characters, respectively). Figure 4 illustrates the effect that the
penalty sel may have on the aeeuracy of the algorithm, with the
other parameter held constant.

Fiwre 4: Mismatch rate for varying penatties (optimizad)

y 7C0

Sam

Msm
A~ 4m

cm
HZCO

~ lm

o
:tflttlz Iizl 1122121112121221 t2222f 112t12?1212t2c m11n1222zt 2222

PENALTIES

The s=ond parameter which may be adjusted involves the
thresholds at which distinctions between strings are made. In
the three-valued framework, the distinction must be made
between matches and questionable matches, and questionable
matches and definite non-matches. Thus, there are two
thresholds to contend with.

Obviously, with two equalfy impmtant variables to consider,
one will have to be held constant while the algorithm is
optimized with respect to the other, The question of the order in
which the parameters are optimized redly comes to a question
of an estimate of the coarseness or fineness of the parameter’s
changes. In the case under review, the coarser measure is the
penalty set - we could effectively deactivate one quarter of the
algorithm by substituting a penalty of O for 1 for any of the error
types. As Figure 4 shows, the <1,1,1,1> sel of penalties for
<omission, insertion, substitution, transposition >,
respectively, performed comparatively well with respect to other
combinations of values. <2,2,2,2> yielded a few less
mismatches but not enough to justify its use over the traditional
penalty assignments.

Holding the penalties constant at <1,1,1,1>, an optimimtion
algorithm was employed to adjust first the lower and then the
upper thresholds until mismatches began to increase. Figure 5
shows that the optimal lower and upper bounds for our test
datasti are 0.12 and 0.19 - the bounds at which the fewest
mismatches occur.

Figure 5 Effaets of threshold changes
on aceuraey

—E0ma2

Results

Figure 6 plots the accuracy of TM with respeet to various
combinations of matches and mismatches that occur as was done
with the benchmark algorithm in Figure 2.

133

Figure 6: Effaetiwrress of TM algorithm by category Fallout = mismatches / (mismatcha + total number
that are neither matches, miamatchea, nor
missed matches)

Generality = (matches + missed matches)/ (matches +
missed matches + mismatches + the total
number that are neither matchea,
mismatches, nor missed matches), i.e., the
total number of string pairs compared

❑ m ❑ ? 8 yes I

If we let [A-B] represent the ratio of the number of times the
algorithm output A to the number of times it should have output
B, thenwe can define the measures for each category (Y, N,
and ?) as follows:F“– .- ‘- --- 1

0 10203040506070 So 90 100

PERCENTAGE prccision(YES) = ~-~/ (~-yl + N-N] + [Y-?])
precision(?) = [?-?]/ ([?-?] + [?-~ + [?-N])
precision = ~-N]/ (W-N] + (N-Yj + ~-?])

For example, the upper bar indicates that the algorithm: (1) says
N when it should say N ~ 90% of the time, (2) says ? when it
should say N = 9% of the time, and (3) says Y when it should
say N = 1% of the time. The other bars compare the cases in
which the algorithm outputs ? or Y to what It should output.
The actual results are tabulated below. The fwst Y, N, or ?
represents the algorithm’s output, and the second represents the
desired output, i.e., the actual match value which was
determined manually. 2,500 string pairs were tested. There are
1,257 non-matching pairs, 614 matching pairs, and 629 pairs
that are border-line cases.

rccall(YES) = V-yl / (~-~ + [?-YJ + N-YJ)
recall(?) = [?-?] / ([?-?] + ~-?] + ~-?])
recall(NO) = ~-N]/ (N-N] + W-N] + [?-N])

fallout(YES) = (~-?] + N-N])/
{(W-?] + W-N]) + ON-N] + W-?] + [?-?] + [?-
Nl)). .,, ,

fallout(?) = ([?-Yl + [?-N])/

[~~~ + [?-N]) + (~-~ + W-N] + [Y-v + ~-
-. .

faUout(NO) = (~-?] + ~-yl) /
{(rN-?] + rN-Yl) + (N-YI + ry-?l + [?-YI + [?-?])}Benchmark Algorithm

Mismatches: 784
Match Type
Y-Y
Y-N

Percentage
74,59
1.35
30,52
6.19
79.40
28.14
19.22
19.25
41.34

generality(YES) = (~-Yl + {[?-Yl + ~-~))/
(w-w + {[?-m + m-m)) +
(~-?] + ~-N]) +
(m-N] + ~-?] + [?-?] + [?-N])

generality(?) = ([?-?) + {~-?] + ~-?]})/
([?-?] + {w-?) + ~-?])) +
([?-~ + [?-N]) +
(NNI + NV + lY-YI+ N-N]

igenerality = (N-N] + {[?-N] + W-N]) /
(~-N] + {[?-N] + W-N]}) +
(0+?1 + m-n) +

Ratio
4581614
17/ 1257
1921629
381614
998 I 1257
1771629
1181614
242 I 1257
260 I 629

Y-?
N-Y
N-N
N-?
?-y
?-N
?-?

TM AIgorithm ([Y-m + -Iy-?j’+ [?-?]+ [?-Yl)
Mismatches: 579
Match Type
Y-Y
Y-N

Ratio
4771614
3 I 1257
79 t629
401614
1139 / 1257
2451629
971614
115 / 1257
3051629

Percentage
77,69
0.24
12.56
6.51
90.61
38.95
15.80
9.15
48.49

As indicated by Figures 7-9, precision increased for the Y and ?
categories and decreased only slightly for the N category, recall
increased for the Y and N categories and decreased slightly for
the ? category, and fallout decreased for the Y and ? categories
while increasing slightly for the N category.

+-+
N-Y
N-N
N-?
?-y
?-N
~-?

Figure 7 Precision by category

O.w r

0.s0

0.70
0.s0
0.s0
0.40
0.s0
0,20
0.10
O&l

The difference in the number of mismatches (205) represents a
26% improvement in accuracy over the benchmark algorithm, n■ ■

m aandlmsfk
In addition to mismatch ratios, TM was evaluated using the
standard information theoretic measures of precision, recaU,
fallout, and generality [21]. These measures are calculated for
each of the three match categories Y, ?, and N. A match occurs
when the algorithm’s match value equals the actual match value.
A mismatch and missed match occur when the algorithm’s
match value does not equal the actual match value. For
instance, if the algorithm says Y when it should say ?, a
mismatch has occurred with respect to the Y cate ory and a
missed match has occurred with respect to the ? category.
Ideally, an algorithm would have 100% precision and recall and
zero fallout. Generality represents an average that needs only
remain constant when two algorithms are compared. These
measures can be expressed in terms of matches, mismatches,
and missed matches as follows:

. -1. . .
YES ?- UI

The actual values are tabulated below:

Benchmark Algorithm
prcziaion(?): 0.48 precision(N) :O.82
rwall(?): 0.52 recalI(N): 0.80
fallout(?): 0.19 faUout(N): 0.18
generality(?): 0.25 generality(N): 0.50

precision(y): 0.77
recall(Y): 0.73
faUout(Y): 0.07
generality(Y): 0.25

Precision = matches / (matches + mismatches)
Recall = matches / (matches + missed matches)

134

Figure & Recall by cate~ry

0.80
0,s0
0.70
0.s0
0.50
0.40
0.24
0.20
0.10
0.00

0.25

0.20

0.15

O.lc

0.05

0.00 1

YES ? N)

Figure 9: Fallout by catqpy

dill
YES

precision(Y): 0.85
recall(Y): 0.78
fallout(Y): 0.04
generality(y): 0.25

? Kr

TM Algorithm
precision(fi: 0.59 precision(N) :O.80
recall(?): 0.48 recall(N): 0.91
fallout(?): O.11 fallout(N): 0.23
generality(?): 0.25 generahty(N): 0.50

There was a net increase of 17% in precision and a net increase
in reeall of 12%. The fallout decreased by 6%.

The decrease in precision with respect to the N category
deserves comment. Figure 10 depicts the breakdown of
matches and mismatches within the category for both benchmark
and tuned metric algorithms.

Figure 10. Malches and mismatches
by algcmthrn(N ealegory)

We note that while TM actually identified 141 more of the
unmatched pairs than the benchmark, this advantage was offset
by only half as many mismatches. This illustrates the sensitivity
of the precision measure to mismatches.

In order to understand the underlying cause, it is helpful to
determine the nature of the mismatches. TM mismatched 96

times in this category in situations where the benchmark
algorithm made the correct assessment. The list in Figure 11
reveals typical differences.

Figure 11, Cases where TM mismatched with e value of 0.20 (N-Y & N-
?) when the benchmark alaorithm matched {Y-Y & 7-?)

N-V N-?

CORACORREA
C’OROCORRAO
PAFS PE.4SE
PHILIJPS PHILP

ALVARADG ALVAREZ
AJUASARJZA
CAHILL HILL
CANALES CANAIJZO
CARREIROCURRIER
CHARETIE CHARTER
CHRISTENSON CHRISTt
COATES COTE
FEELY FOLEY
FERRARtFERREtRA
ITSCHERFISCHMAN
GAGNE GAGON
GENDRJZAUGENDRON
GOULD GUILD
HENDERSON HENDRICKSON
L4J?.NAJANES
KEELY JOLEY
KIAMA KULMA
IAFAIAM L4FIAMME
tANGILLE IANGLEY
MARJOMAURO
MATEO MATOS
MCKENNA MCKINNEY
QUEEN QUINE
RAZMORAMOS
RASTANI RISTAINO
REGAN RGEON
SALWA SUWA
SANDREW SAUNDERS
SILVERMAN S1LVERST13N
STEEN STONE
Swm SWEtz

In our opinion, further tuning was unwarranted for the results of
TM more closely approximated our intuition than the test
dataset. However, the tuning procedure would be the same as
employed above.

Conclusion

The tunability of the Levenshtein metric makes it possible to
tailor it to specific applications. Using a representative sample
of the production data it can be adjusted to adapt to the types of

r
corru ions that occur in that data. We have found that it
signi lcantly improves on an existing algorithm in a context
where corrupted name pairs must be matched.

Acknowledgements

This research was supported in part by a grant from the
ACXIOM corporation and grant # ASTA 91-A-02 from the
Arkansas Science and Technology Authority.

References

[1] Knuth, D. (1973). SortinR and Searching. Reading: Addison-
Wesley.

[2] Hall, P. & Dowliig, G. (1980). Approximate String
Matching. Comuutin~ Survevs, 12, 381-402.

[3] Berghel, H. (1987). A Logical Framework for the
Correction of Spelling Errors in Eiedronic
Documents. Info. Proc. and Mrzmt.. 23,477-494.

[4] Berghel, H. & Andreu, C. (1988). TALISMAN: A
Prototype Expert System for the Detection and
Correction of Spelling Errors. Proc. 1988 ACM
SvmD. on Small Svstems (pp. 107-113).

[5] Fautk, R. (1964). An Inductive Approach to Language
Translation. Communications of the ACM, 7, 647-
653.

135

[6] Glantz, H. (1957). On the Recognition of Information with a
Digital Computer. Journal of the ACM, 4, 178-188.

[7] Angell, R., Freund, G:, & Willett, P. (1983). Automatic
Spelling Correetlon using a Trigram Similarity
Measure. Information Processing and Management,
19, 255-261.

[8] Odell, M. & Russell, R. (1918, 1922). U.S Patents
1,261,167 (1918) and 1,435,663 (1922).

[9] Alberga, C. (1967). String Similarity and Misspellings.
Communications of the ACM. 10,302-313.

[10] Blair, C. (1960). A Program for Correcting Spelling
Errors. Information and Control, 3, 60-67.

[11] Davidson, L. (1962). Retrieval of Misspelled Names in an
Airlines Passenger Record System. Communications
of the ACM, 5, 169-171.

[12] Muth, F. & Tharp, A. (1977). Correcting Human Error in
Alphanumeric Terminal Input. Information Processing
and Management. 13, 329-337.

[13] Pollock, J. & Zamora, A. (1984), Automatic Spelling
Correction in Scientific and Scholarly Text. CACM,
27, 358-368.

[14] Levenshtein, V. (1966). Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. ~
Phvs, Dokl. .10, 707-710.

[15] Lowrance, R. & Wagner, R. (1975). An Extension of the
String-to-String Correction Problem. Journal of the
~, 177-183.

[16] Wagner, R. & Fischer, M. (1974). The String-to-String
Correction Problem. Journal of the ACM. 21, 168-
178.

[171 Manber, U. (1989). Introduction to Als!orithms: a Creative
Amxoach. Reading: Addison-Wesley.

[18] Fu, K. (1976). Error-Correcting Parsing for Syntactic
pattern Recognition. In Klinger, et al (Eds.), w
Structures, Comuuter Graphics and Pattern
Rccoznition. New York: Academic Press.

[19] Unman, J. (1977). A Binary N-Gram Technique for
Automatic Correction of Substitution, Deletion,
Insertion and Reversal Errors in Words. ~
Comuuter Journal, 20, 141-147.

[20] Zamora, E., Pollock, J., & Zamora, A. (1981). The Use of
Trigram Analysis for SpelIing Error Detection.
Information Processing and Management. 17, 305-
316.

[21] Salton, G. & McGill, M. (1983). Introduction to Modem
Information Retrieval. New York: McGraw Hill.

[22] Salton, G. (1990). Automatic Text Processing. Cambridge,
MA: MIT Press.

[23] Damerau, F. J. (1964). A Technique for Computer
Detection and Correction of Spelling Errors.
Communications of the ACM. 7, 171-176.

136

