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ABSTRACI 

In this paper we discuss a protot 
?r 

of the tableau method which derives 
its rule base from Jeffrey’s text I 1. The heuristics are a subset of those 
outlined for HARP by Oppacher &d Suen [4]. The prototype was written 
in C and intended for use with the IBM family of microcomputers. We 
shall outline some of our implementation strategies and, insofar as is 
possible, contrast than with those of the earlier pioneering work of 
Oppacher and Suen. 

INTRODUCTION 

One of the major practical breakthroughs of this century in formal logic 
was the development of the semantic tableau [1][2][7]. This complete and 
consistent decision procedure has since evolved into the trnth tree method 
[3][8] which presetves the important completeness and consistency 
properties while making the resulting proof tree more readable. As a result 
of the convenience of the procedure and the desirable metalogical 
properties, the truth tree variant of the semantic tableau has bccane a & 
facto standard for first order problem solving [3]. 

From a computational point of view, the method is attractive because it is 
suppottable by fairly clearcut unification and resolution procedures. Since 
an automated tableau, by defmition. supports full first-order logic with 
identity, them is a great deal of current mtemst in developing prototypes 
(see refs. [4] [5] [6] [7] for further details). 

THE FORMAL METHOD 

As with convcnticnal inference engines (e.g., Prolog), semantic tableaus 
rely on a reductio ad absurdum or indirect proof strategy. ‘Ibat is, in the 
case of valid& checks. an attemut is made to reconcile the neeation of the 
conclusion with the premises. ti the negation of the conclu.&n is jointly 
satisfiable with the premises, then the conclusion is not satisfiable, hence 
the argument is invalid. Unlike conventional inference engines, the 
tableau method works with full first order expressions rather than 
restricted subsets (e.g., Horn clauses) and utilizes a set of procedural rules 
which are complete w.r.t. the Principia Mathematics camectives. ‘lltir 
makes the automation of the semantic tableau particularly appealing to the 
AI community. 

The semantic tableau rule base consists of three types of rules: branching 
mles, non-branching rules and quantifier rules (see Figure 1). We will 
initially take up the first two categories. 

The validity of the parsing rules derives from the truth functional 
properties of the corresponding formulas. To illustrate, we note. that there 
arc two ways in which the formula ’ avfi’ may be true: either ’ a’ is true or 
‘p’ is true (or both, of course). In the tableau, this fact is captured in a 
branching rule with ‘a@ as the parent and ‘a’ and ‘8’ as separate 
descendants. Similarly, de Morgan’s law for conditionals tells us that a 

negated conditional is true just in case the antecedent is true and the 
consequent is false. This fact is reflected in a non-branching rule, In 
general, the parsing rules ensure that every truth functional alternative 
appears in the proof tree. One may think of each of these parsing rules as 
a property whtcb holds for any arbitrary interpretation over the variables 
(e.g., I(a-$)=F c) (I(a)=T and I(B)=F), for any interpretation. I). The 

c 
aning rules which pettain to truth functional structure appear in both 
ranching and non-branching versions in Figure 1. 

I) Non-Branching Rules 

a*+ b)A c)-(A V B) d)-(A + B) 
A -A A 
B -B -B 

2) Branching Rules 

M&E! W-A&B MI!LAB d)iyAB e)-(A c) B) 
-AI-B 

Bl& 
A I-A 
-BIB 

3) Quantification Rules (restrictions apply - see text) 

a)VxA(x) b);:tiAti c)3xA(x) d)3xA(x) 
NO - 40 Vx-A(x) 

FIGURE 1: TABLEAU PARSING RULES 

In addition to the parsing rules, there are two rules which deal with 

1. 
uantification. The rule for existential quantification is depicted as 3.~. in 
tgure 1. This rule states that for any formula of the form 3xa, if the path 

containiig 3xa does not contain any formula of the form a[x/t], then we 
may substitute for 3xa a new formula a[x/t] for some term, t. In effect, 
this guarantees that ground instances of existential quantifiers will only 
result from instantiations of terms new to the path. 

Conversely, the rule for universal uantification 
I 

ensures that grounding 
will only result fmm instantiations o terms already on the path. Formally, 
f-&e% zc’$ t;yw;vy ~~;g~;;goQ’$m’; it;;: t; 

quantification is never tcrm’mal with respect to a formula. J this case, but 
in no other, our algorithm retains the original formula Vxa on the path 
along with each and every ground instance. 

The flowchart for the semantic tableau appears as Figure 2 followed by a 
typical tableau in Figure 3. 

HEURISTICS 

As we mentioned earlier, one of the advantages of the tableau method is 
that with the exception of a few anomalies involving quantifier nesting, the 
rules may be applied in any order without sacrificing the correctness of the 
procedure. In our system, we apply the rules by means of a subset of the 
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STAGE l.List the premises and the negation of the conclusion. 

STAGE 2. Apply the rules for the negation of all relevant formula. Close 
(Xisz?h path that contains both a formula and its negation. Am all paths 

NO: GO TO STAGE 3 
YES: STOP. THE INFERENCE IS VALID 

STAGE 3. Is them a formula (unchecked in an open path) to which one of 
the parsing rules applies? 

NO: GO TO STAGE 4 
YES: APPLY lT and GO TO STAGE 2 

STAGE 4. Is there a formula (unchecked in an open path) to which the 
rule for existential 

No: GO ~0 STAGE 5 
uantifiers can be applied. 

YES: APPLY II and GO TO STAGE 4 

STAGE 5. Is them a formula (in an open path) for which the rule for 
universal quantifiers can be applied? 

NO: GO TO STAGE 6 
YES: APPLY IT and GO TO STAGE 5 

STAGE 6. Have any changes been made in the tree since last entering 
stage 2, above? 

NO: GOT0 STAGE 7 
YESGOTOSTAGE2 

STAGE 7. STOP. ‘Ihe inference is invalid. 

FIGURE 2: TABLEAU FLOWCHART 

Vx(Px A Qx) + (VXPX A VXQX) 

1 v 

:J 

-fz&: A$) -r (VxPx A VxQx)) [negation of fomntla] 

-0fxPx A VXOXJ 
; ;gxPg I 5 d-VXQX 

8 - 
I 7 clx-Qx 

-Pa 19 -0b 
:: tiEAQa i :itigAQb 

13 Qa I 15 Qb 
X (closed) I x (closed) 

FIGURE 3: SEMANTIC TABLEAU 

heuristics used in HARP. It should be. remembered that the objectives for 
this prototype were portabiity within the IBM/PC family of 
microcomputers and efftciency. As a result, heuristics were ‘hardwired’ 
into the code. This yields the small coda sixe and increased speed, but 
comes at the exoense of neneralitv and robustness. Further. aU of our 
heuristics am de&able as ?jpe A h OPPacher and Suen, e.g. defmable as 
“...heuristics for efficient and human-ltke proof construction...“. As a 
group, they are ‘textbook-level’ heuristics which vittmthy every student of 
elementan, loeic atmlies in tableau-based masoninn. 
For ccsnp~ete&ss.*we include in Table 1 the entireiet of 14 heuristics used 
in HARP by Oppacher and Sum. lhose which we have implemented are 
marked with ari itsterisk. 

HARP has implemented a memory saving schema which allows new 
nodes to be added without fotmula duplication. New nodes are 
mpmsented by pointers to the proper sub-fonmtla of the ancestor formula. 
This allows for stmdure sharing among many nodes. This feature was not 
implemented in the system. 

GENERAL CONTROL SI-RUCTURE 
TABLE 1: Heuristics HO to H13 

HO: Work on a branch until it closes or is known to remain open 
Hl*: Work on a formula until it is ground 
H2*: Avoid unnecessary branching 
H3*: Prefer existential instantiation 
H4: Favor formulas with nested existential quantiflen 
H5: Favor formulas derived from the negation of the conclusion 
H6: Avoid clearly useless work 
H7: Prioritize branching 
HS*: Favor fresh universal quantifiers 
H9*: Minimize the proliferation of instantiated terms 
HlO: Use of theorem Introduction (complementary) 
Hll: A ly domain specific rules wherever possible 
Hl2*: #snify complete open branches ASAP 
H13*: Recognize non-converging V3 patterns 

The prototype is implemented by using a control 1 
7-i 

which utilizes the 
ordering of the Procedures in the loop to apply the euristics in proper 
order. ‘lhe control locp based upon earlier work of Reeves [5] is as 
follows: 

begin 

YG~es:=false 
close each path containing a sentence and its negation 
if all paths closed, deliver:entailment is valid 
else 

( 1) if a splitting rule can be applied then 
changes:=tme 
(2) apply appropriate splitting rule 
mark the sentence as used 

&e(3) 
Before we turn to a discussion of the actual implementations we need to apply the existential (iistantiation) rule 
make a fairly substantial caveat. Since this is a prototype, we took 
considerable liberties in exI%%&ation. even if the experimentation were 

(4) apply the universal (instantiation) rule 
until not changes 

unjustified from a practical or theoretical point of view. For example, our 
current search strategy is breadth-first, rather than depth-fist (as called for 
in HO). Since we may determine the invalidity of an argument with only 
one open path, them is no reason to pursue a second path if we can show 
that the fint one will never close. Hence, HO is the only viable search 
strategy. However, a breadth fust strategy is far mom useful when one is 
tracing through the program execution because it provides a wider window 
into the operation of the program. Thus, it was selected. We had similar 
reasons for omitting other heuristics. In general, if we felt that the time 
spent was disproportionately large compared with the understanding which 
the inclusion would have afforded, we left it out. It is important to 
recognize that our approach is purely exprimental within a narrow 
environment, and not unended as a commerctal-grade product. 

DEVELOPMENT SYmEM 

Our rototype was totally developed in a microcomputer environment. 
The JL velopment and target machine was an IBM PC class platform with 
640k and PC-DOS 3.0 or above. ‘Ihe compiler used was Microsoft Quick 
C, version 1.0. The resulting program uses ‘standard C’, and is, therefore. 
portable, except for the windowing functions used to develop the opening 
screens. The uortabilitv and utilitv of the system is further enhanced bv 
the fact that the exec&ble mod& is cnlv f9k in size. Each node in the 
tableau requires approximately 3d bytes:primarily for @mcrs to other 
structures. These additional structures require a substanttal portion of the 
memory usage by the system. We estimate that a tableau with two to three 
thousand nodes can be easily accomodated in a machine with 640k 
memory. 

LIMITATIONS 

Some limitations apply to the implementation of the system, primarily 
regarding the input schema, and the number of heuristics included. 

During in 
example o p”* 

t. all cauteaivu must be completely ~renthesized. An 
thus would be: ((Fa+Ba)+Ca):Da. The tnput routine checks 

for the proper matching of parentheses. It appears that HARP [4] adds 
parentheses as needed, by itself. Also. connectives and quantifier symbols 
in the proto 
the lower s 

have been chosen from the set of printible characters in 
of the ASCII set. This increases wttabilitv. but decreases 

the aesthetic appearance of formulas. 
1 _ 

HARP maintains nodes awaiting processing in a Priority queue. A meta- 
level supervisor applies the heuristics su 

$” 
ned by the system, and selects 

a new candidate formula for processing ased upon the resultant priorities. 
The prototype applies the heuristics implemented as part of a control loop 
which uses the sequential ordering of the procedures to apply procedures 
in the prouer order. The ordering of the control structure itself forces 
heuris&s -to be am&d in thi Dr0De.r order. favorina existential 
instantiation, for ex&ple. over u&e& instantiation. tie protoype 
system maintains a list of leaf nodes so that full tree tmversals are not 
required to apply splitting rules to leaf nodes or to determine if the entire 
tree is closed. 
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deliver: entailment is invalid 
end 

Lines marked above in braces, e.g. ( 1). ate referenced below. 

Our control structure is slightly varied to allow for the inclusion of the 
heuristics described above. H2, can be incorporated by distinguishing, at 
section { 1) between sentences available for branching mles and non- 
branching rules. By favoring non-branching rules over branching rules for 
application at section (2). one incorporates H2. since non-branching rules 
restrict the growth of the seach tree. 

In section (3). the pseudo-code for our prototype is implemented so that 
the application of a universal instantiation would occur only if there were 
no exrstential instantiation candidate available. This effectively applies 
H3. 

HS is implemented by maintaining a flag which indicates when a universal 
quantifier rule is used- Section (4) prefers universal quantifier rules 
which have not been used. For full implementation of HS, this flag would 
be changed to an occurrence counter, and the universal rule with the 
lowest counter value would be selected. 

Heuristic H9 is concerned with minimizing the number of new parameters 
introduced. This heuristic was incorporated through the use of a system 
incorporating Reeves’ dummy variables schema, [5], and is discussed in 
more detail below. 

The resulting control structure for the system, therefore, is as follows: 

tree-change := false 
if (tree-closed) then valid := true 
else 

sear&for_alpha-rule 
if (no al ha-rule) 

seam -for-beta-rule 1 
if (splitting rule found) 

apply splitting rule found 
tree-change :=tme 

else 
search-for-existential candidate 
if (no existential~cand~ate~found) 

search for_universal~rule 
if (existe&l~candidate~fcund) 

apply existmtial~rule 
tree-change := true 

else if (universal-candidate-found) 
apply universal mle 
tree&xnge :=tme 

) while (tree-change = true) 
if (valid = true) return: entailment valid 
else return: entailment invalid 

H12 is implemented using the d-y variables and scope trees. When a 
dummy variable is added to a leaf node, and the constraint list is empty, 
the conditions hold for invoking Hl2. and the branch may be declared 
complete. 

HI3 is invoked when applying instantiations from formulas containing a 
V3 pattern. This operation involves checking branches for non- 
converging V3 patterns. A standard form of a non-converging V3 pattern 
is: 

‘dxEyFxy,EyFay,Fab,3yFbyFbc.EyFcy,Fcd 

The universal and existential quantifiers repeatedly introduce new 
instantiations which do not converge towards a solution. Implementing 
H13 involves a search of the current path when instantiaticms arising from 
a V3 formula arise. When a non-converging pattern is found, the branch is 
declared complete. 

DUMMY VARIABLES 

As mentioned above, the use of dummy variables in universal 
instantiations can help canto1 the proliferation of unnecessary nodes. 
Implemmtatiar Problems with d-y variables generally fall into two 
categories: quantrtier scope and constraint lists. 

The fiit determination to be made when using dummy variables is the 
scope of the quantifiers involved in the sentence prior to instantiation. For 
example, consider the sentence: 

vx (vysl(...) + Vdv(...)) 

From the discussion above, it can be seen that existentially instantiating 
either u or v should constrain x. since both are within the scope of Vx. 3u 
is within the scope of Vx and Vy, but not within the scope of Vz 3v is 
within the scope of Vx and Vz, but not within the scope of Vy. If an 
existential instantiation is made with variable u, the resulting constraint 
should only be placed upon the dummy variables for x and y. and not z. 
To manage this problem, our prototype utilizes scope trees to determine 
the Proper dependencies. 

A scope tree is constructed for a sentence with quantifiers. The tree 
maintains only the quantifier portions of the sentence so that a relation of 
dependencies can be uickly analyzed. As leaf nodes are added to the 
tableau, each receives % e appropriate copy of a scope tree. 

As one instantiates portions of the tableau, it is necessary to determine 
which values have appeared. Using only scope trees, any instantiation 
would require a search of the s 
node. For reasons of efficiency z ~~&Y~~~~p~~~~~~; 

path-frames. A path-frame is a dou ly linked list which stores all values 
which have hem inserted in every path of the tableau. Each leaf node 
maintains a 

*R” 
inter to its path-fmme and can check the a&-frame for 

values whtc P have been used along the path to the eaf node. A 
path-frame is maintained for every leaf node. When a new node is added, 
the 

I? 
tit-frame is moved to the new node. When a splitting rule has been 

app ed. for example, creating two new leaf nodes, each of the new nodes 
receives a copy of the path-frame of the parent. This allows quick 

EXAMPLE 1 

Formula: F[l][2], (G[l][3]&R[l][2]),(F~l][2]>(-G[l][3]+-G[l][3]+- 
N11[21) 
Entailment is valid 

NODE LEFI 
0 1 

‘RIGH’I 

s 
8 

‘CLOSEDCONTENTS 
n FV1[21 
n (G~11[3l~N11[21) 
n h-11 1[21~(-G~11~31+-R~11~21)) 
n G[11(31 

; 
Wd 
-FUlM 

;: 
(-G~~lI3l+-N11~21) 
-w1[31 

Y -Wl[21 

EXAMPLE 2 

Formula: -3x(Fx+-Fx) 
Entaihnent is valid 

NODE LEFT RIGHT CLOSEDCONTENTS 
0 1 - n Vx-(Fx+-Fx) 
1 

; : 
n 

; - - ; 

4#1+-FQW 

FWll 

[#l] = 1 Constraint on [#l] : None 

EXAMPLE 3 

Fommla: EzBzz, Vx(Sx>Bxx):-S[7I 
Entaihnent is invalid 

NODE 4”” RIGHT CLOSED s;BCIENTS 
0 n 
i 1 - n 
2 3 - n 

v.$-W 
S 

3 4 - n Blllll __ II 
5 6 

; - - ; 
(~[~ll~B~~ll[~ll) 
-S[#l] 

6 - - n BWllWll 

[#I] = 7 Constraint on [Ml : None 

FIGURE 4: SAMPLE OUTPUT 
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determination of potential instantiations for a given node. 

SAMPLE OUTPUT 

Ou~ut from the prototype is presented as a lit of nodes and contents 
simtlar to that used in a cursor-based array implementation of a binary 
tree. This method of presentation was chosen to eliminate the problem of 
graphically displaying a binary tree of arbitrary depth. As can be seen 
from the exam les 
decision as to w rl 

in Figure 4, the original formula is presented. a 
ether or not the entailment is valid, then a presentation of 

the tableau. Constraints on dummy variables are also listed, where 
applicable. 

Dummy variables are listed as [Xx] where x is an integer value. Constants 
are represented as positive integers. V is used for universal quantitlcaticst, 
E is used for existential quantification, other capital letters are available 
for predicates. Variables are represented by lower case letters. 
Connectives are: ‘&’ for AND, ‘+’ for OR, ‘-’ for NEGATION, ‘>’ for 
IMPLICATION, and ‘=’ for CO-IMPLICATION. ‘lhe premises are 
terminated by commas, and the conclusion by a colon. Constraiuts are 
listed by dummy variable name. For example, the line: 

[#II = 0 Coflstraint on [#I] : 1 

is equivalent to Reeves’ “X 1 < 1” where 1 is considered a ccnstant. 

CONCLUSION 

As we mentioned in the introduaion, we approached this pmtotyping fran 
a special interest point of view. Unlike the broader work of 0 acber and 
Suen, our work is best described as an investigation into the 

pp. . . 
eastbtbty of 

developing a tableau-based inference engine for MS-DOS 
microcomputers. We found that such a system was both realistic and 
practicable within this environment. 

Subsequent work on memory management and control strategies has 
already begun. A depth-fist search strategy would speed the 
determination of the validity of the entailment, and will be included in the 
future. Parallel with this work will be an investigation into the type and 
variety of extra- and meta-logical mechanisms which may be requued of 
the programming language which will ultimately evolve from this work. 
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