
COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 13

PE
TE

R
 H

O
EY

Hal Berghel

Normally, my columns are a
product of accretion. This
one, however, was inter-

rupt driven. The trigger in this
case was the convergence of two
independent events: my response
to Peter Wegner’s article “Why
Interaction Is More Powerful
than Algorithms,” which
appeared in the September
1997 issue of Communications
(“Forum,” p. 20) and the
publication of an ACM
Press book by Capers
Jones, The Year 2000
Software Problem: Quan-
tifying the Costs of
Assessing the Conse-
quences. Not one to
ignore kismet, I wrote
this column.

The story unfolds
this way. Following the
publication of his arti-
cle, Wegner and I were
discussing various com-
putational metaphors for
interactive computing. I
found Wegner’s “algorith-
mic computing is weaker than
interactive computing” argument
compelling. In addition to his for-
mal arguments showing that
interaction machines cannot be
expressed by Turing machines and
his incompleteness proof that

interactive systems cannot be
expressed by first-order logic,
there are several practical exam-
ples showing that interactive ser-
vices like banking or airline

reservations cannot inherently be
realized by non-interactive (Tur-
ing machine) systems.

I suggested likely examples
that went beyond the inadequacy
of algorithmic computing in

handling the interactivity. One
that came to mind was the year-
2000 (Y2K) problem. I sug-
gested that computer users (both
physical and digital) take each
system report of a correct date as
a confirming instance of the
hypothesis that the system’s
reported date is always correct.
What the Y2K problem shows
is that correct time observa-
tions were not confirming
instances of this hypothesis at
all, but rather one where
“date” terms were unknow-

ingly temporally qualified.
That is, we assume system date

reports state, “this is the current
date,” when in fact the report
should have been interpreted as
“this is the current date only if
the current date is prior to year
2000.” Most experimental com-
puting is predicated on the fact
that successful runs confirm cor-
rectness, and I was trying to
show the Y2K problem provided
a counterexample. My promised
elaboration was triggered by the
appearance of the Capers Jones
book.

The Architecture of the Y2K
Problem: A Few Bytes—No
More, No Less
What’s the true storage cost of

The Year-2000 Problem and
the New Riddle of Induction

Digital Village

14 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

two bytes? Minuscule in the
individual case, wasteful excess
that multiplied by the billions.
The Y2K problem is about a
couple of bytes—a couple of
bytes of storage saved in data-
bases, a couple of bytes saved on
silicon, a couple of bytes saved in
BIOS routines, a couple of bytes
spared by operating system func-
tion calls, a couple of bytes of
I/O. This problem is about a
couple of bytes.

The result of the computing
community’s byte parsimony is a
multitude of computing systems
that will not, in the normal
course of things, roll over to
2000 at the end of this century.
Many systems will roll back to
1900 instead. Others might pass
beyond the millennium threshold
correctly, only to fail to roll over
from 2099 to 2100. Still others
may fail to advance beyond a pre-
determined elapsed time in sec-
onds since a certain starting date.
These anomalies are motivating
organizations worldwide to pre-
maturely retire their computer
systems, scramble for patches and
work-arounds, and establish Y2K
rapid response teams to deal with
all of the glitches the other tech-
niques fail to address. The aggre-
gate worldwide cost of dealing
with this problem is stagger-
ing—by some estimates in the
hundreds of billions of dollars—
but more on that later. How did
we come to this?

Flashback to the 18th-century
Scottish philosopher, David
Hume. (This is going to be a bit
of a stretch, but bear with me. In
a few pages we will converge on
a point of enlightenment, or at
least raise the Y2K problem to a
lofty theoretical level it may not
deserve.)
Hume was skeptical about find-
ing a foundation for inductive
reasoning—the inference from
particular to general. We can’t
come to “know” that the sun will
rise daily in the same way as we
“know” the equality of 2+2 and
4, he argued, because reason is
not the source of inductive
beliefs: induction is neither ratio-
nal or logical. Hume wondered,
how could one justify induction.
Clearly it was beyond the capac-
ity of deductive reasoning. But
an inductive justification would
be viciously circular. Thus he
concluded that inductive reason-
ing can’t be justifiable in the cus-
tomary (that is, deductive) sense
of the term at all. So we have, as
it were, an inductive paradox
that, for convenience, we’ll call
the “old riddle of induction.”
Inductive reasoning works,
Hume thought, not because it
involves the justified inference
from the particular to the gen-
eral, but because the cause-effect
relations and associations
involved are internalized in some
sort of “instinct.” The legitimate
expectations on which our behav-

ior is based—that the sun will
rise in the East tomorrow at
about the same time as today,
that the trade winds will con-
tinue to blow, that the seasons
will change—are all expectations
founded on this human instinct.

What does Hume have to do
with the Y2K problem? Be
patient and read on.

Inductive Riddles
So, Hume leaves us not only
with his “old riddle of induc-
tion,” but also with an escape
clause: we can account for our
faith in inductive reasoning by
appeal to basic instinct. Induc-
tion isn’t rational, but it works
so well as a foundation of our
beliefs that we needn’t worry
much. The “old riddle of induc-
tion” dissolves. Is that the end of
the matter? In a word, no. A
paradox remains which will tie in
to the Y2K problem.

Flash forward to the mid-
1900s, when a Harvard philoso-
pher, Nelson Goodman,
investigates Hume’s work and
concludes that Hume has con-
ceded too much to his critics.
The “vicious circle” isn’t really
vicious at all. Goodman claims
that inductive reasoning, just
like deductive reasoning, is justi-
fied by conformity to appropri-
ate, general rules. If, for example,
we predict tides that don’t arrive,
we adjust the rules that gave rise
to the prediction. So it is with

THE Y2K PROBLEM IS ABOUT A COUPLE OF BYTES OF STORAGE
saved in databases, a couple of bytes saved on silicon,

a couple of bytes saved in BIOS routines, a couple of bytes spared by
operating system function calls, a couple of bytes of I/O.

This problem is about a couple of bytes.

COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 15

Digital Village

deduction. If the axiom of speci-
fication produces a contradiction
(a.k.a. Russell’s Paradox), we sub-
stitute another less-problematic
axiom, or introduce a set theory
based on types, or whatever else
is necessary to fix the problem.
Induction should fare no worse
than induction in terms of its
justification.

However, just as the old riddle
is solved (or dissolved), Goodman
finds a new riddle. The new rid-
dle has to do with hypothesis
testing.

In inductive reasoning,
hypotheses are both generaliza-
tions of, and predictors of, evi-
dence statements. As Goodman
observes, the fact that one copper
wire conducts electricity is con-
firming of the hypothesis that
copper conducts electricity, but
the fact that one student in class
is a third son does not confirm
the generalization that all stu-
dents in the class are third sons.
Generalizations from evidence
statements are only possible when
the hypotheses are law-like.

Suppose, Goodman suggests,
that we observe that all emeralds
before some time, t, are green.
Each observation of a green emer-
ald prior to t is therefore a con-
firming instance of the
hypothesis that all emeralds are
green. Next, let’s introduce
another predicate, “grue,” such
that an object is grue just in case
it is green before t, or blue there-
after. The same observations now
support the claim that all emer-
alds are grue. Both predictions
are equally supported, but those
involving “grue” are not sup-
ported to the same degree. The
reason is that the instances of
grue-ness betray a linguistic coin-

cidence, rather than a law-like
regularity.

The new riddle of inductive
reasoning (a.k.a. Goodman’s Para-
dox) derives from the fact that we
cannot always distinguish law-
like regularities from contingent
or accidental ones. We have no
straightforward way to distin-
guish between the case where
light bending around the moon
during a solar eclipse confirms
Einstein’s General Theory of Rel-
ativity, than Aries’ presence in
the house of Mars with solar exal-
tation confirms a cookie’s fortune.

The Y2K Problem Revisited
You’ve stuck it out this far. It’s
downhill from here.

The genesis of the Y2K prob-
lem is seen to be an instance of
the “new riddle of induction.” It
results from the mistaken belief
that a computer date stamp is
projectable—that is the confir-
mation of a hypothesis. We
blithely assumed that an operat-
ing system date stamp satisfied
the predicate “___ is the current
date on the Gregorian calendar”
when, in fact, the predicate was
“___ is the current date on the
Gregorian calendar only before
time, t; and not thereafter.” The
accuracy was contingent and not
law-like.

Actually, the problem is even
worse than that. Sometimes there
are several layers of non-pro-
jectable predicates involved. I’ll
use DOS to illustrate the point.
We take the result of function
2Ah of interrupt 21h (“Get
Date”) to be a confirming
instance of the hypothesis that
this function produces the cur-
rent date in register CX. Such is

not the case. Unbeknownst to us,
DOS only recognizes the contents
of CX if it falls within the range
1980–2099 (2099 is time t in
this case). But the reason for this
constraint betrays even more con-
voluted logic beneath DOS.
Function 2Ah retrieves date
information from the ROM BIOS
services. However, subservice 04h
of BIOS interrupt 15h (“Get
Real-Time Clock Date”) actually
only returns the century (either
19 or 20) in register CH and the
half-word integer equivalent of a
two-digit year in CL. So the 4-
digit integer date that the DOS
function reports is already the
product of interpretation by the
OS. But it doesn’t stop there.
The DOS FILE_DATE values,
offset 18h from in the directory
entry, is an even more corrupted
version of a date stamp. In this
case, the reported date is a com-
pression of the DOS reported
date according to the formula
((year-1980) x 512) + (month x
32) + day. Hence, December 31,
1999 becomes the unsigned word
integer 279Fh (10,143). It is
interesting to note that the
rollover for the file date would
actually be 1980 + 2**7 years, or
2108, but since DOS will only
recognize the 19th and 20th cen-
turies, the file date will be unde-
fined under DOS beyond 2099.
The point is that none of the
associated predicates of these
functions and interrupts are pro-
jectable beyond some time, t, in
the near future. The new riddle
of induction rears its ugly head in
countless ways. The new riddle is
to be found in the very bowels of
our BIOS.

These sorts of problems exist in
all complex interactive environ-

16 March 1998/Vol. 41, No. 3 COMMUNICATIONS OF THE ACM

Digital Village

ments. Some, like those I’ve men-
tioned, may be a result of incor-
rect software interpretations of
hardware. Most, however, will be
a result of semantic confusions
engendered within software sys-
tems such as non-
monotonic code
expansion and confus-
ing extensional and
intensional meanings
of variables.

Economics of Byte
Conservation
The root cause of our
present malady is byte
conservation. The
lengths to which we
have gone to save a
few bytes would do
justice to endangered
species. But we may
not have accom-
plished much in the
end. Capers Jones
quotes Leon Kappel-
man who has calcu-
lated that the cost to
fix the Y2K problem
will eat up all of the savings
accumulated by compressing
dates in the first place (see Com-
munications, Feb. 1998, p. 30).
Jones adds, “The Year-2000
problem actually originated as an
explicit requirement by clients of
custom software applications and
the executives responsible for
data centers as a proved and
seemingly effective way of saving
money. Many programmers knew
that the clock would run out.…”

So what are the estimated
costs? Capers Jones offers a
wealth of information on this
subject. Consider his prediction
of U.S. repair costs for the Y2K
problem in Table 1.

Jones predicts a $70 billion
loss in the U.S. alone for Y2K-
related software problems. What’s
more, this ignores the costs of
repairing databases and data
warehouses—costs he hypothe-

sizes could reach another $125
billion. Figure 1 shows how these
expenses will break out by year
by type. As can be seen, the liti-
gation costs of the Y2K problem
only begin to express themselves.
Figure 2 shows how these expenses
break out by programming lan-
guage as a percentage of the $70
billion costs.

The Consequences of the
Y2K Problem
We illustrated the Y2K problem
by means of a general problem
with inductive reasoning called
the “new riddle of induction.” We
also saw how this problem will
affect our lives. Let’s assume for

the moment that all occurrences of
the Y2K problem are solved by
the end of 1999. Will the problem
go away?
Not necessarily. The real problem is
that computer practitioners confuse

the computer system’s
“interpretation” of a sys-
tem predicate (_IS_
CURRENT_DATE)
with the actual
predicate (_IS_CUR-
RENT_DATE PRIOR
TO T; UNDETER-
MINED THERE-
AFTER). Even if the
Y2K problem disap-
pears, we will still have
to deal with the
“elapsed time in Unix”
problem. A manual
might say that Unix
function x produces
today’s date in Register
1. In fact, it won’t
“report” the date at all,
rather it will “calculate
the date on the basis of
the number of seconds
which have expired

since January 1, 1970, until count,
t, reaches 2**31; and the number
of seconds since January 18, 2038
thereafter until count, t, reaches . .
. etc.” Naively, we have designed
our programs for the projectable
predicates described in our manu-
als, and not for the non-pro-
jectable predicates undermining
them.

To make matters more compli-
cated, there are several four-byte
REPORT_DATE standards (ISO,
Microsoft, European) in use that
are all incompatible with one
another. Will manuals of the
future report that function x
reports “current date,” on the one
hand, or “current date only if one

Military
Finance
Manufacturing
Communicatoins
Services
Insurance
Wholesale
Federal
Defense
Retail
Software
Municipal
Health care
States
Energy
Transportation
Other

TOTALS

1,909,091
450,000
555,556
423,529
555,556
450,000
517,647
400,000
266,667
412,500
193,421
150,000
111,563
100,000
87,500
82,031

1,800,000

8,465,060

$14.3
4.9
4.7
4.2
4.4
4.1

 3.9
3.2
2.9
3.1
1.7
1.1
.89
.77
.70
.66

15.1

 $70,753,562,795

Effort
(In person months)

Costs
(In $billions)Industry

(Adapted from Capers Jones, The Year 2000 Software Problem, ACM Press 1997.
Used with permission.)

Table 1. U.S. repair costs for the Y2K problem

is using version, b, of operating
system, OSk, prior to time, t, in
Microsoft format,” on the other?

In retrospect, a viable solution
to the Y2K problems (in general)
was to have been found in
geochronology all along. The
earth’s geologic time clock
started roughly four billion years
ago. Assuming that we are not
yet at the mid-point of the earth’s
evolution we need to keep track
of less than 10**18 seconds or
3x10**11, years which, for all
practical purposes, can fit within
64-bits. Had system designers
and architects been inspired by
geochronologists, they would
have selected a 64-bit date field
to begin with. Even this might
have been excessive. The
dinosaurs, for example, only lived
for 200 million years and they
demonstrated far less propensity
for self-destruction than humans.
If we don’t outlive them, we
could save four bits! In any case,
according to Jones’s estimates, if

the use of this double-word,
expanded date field gobbled up
$200 billion dollars over the last
50 years, we would have still
come out ahead by 2000.

But the more interesting issue
is whether there are other Y2K-
type problems we should be
aware of. How many more “new
riddles” are there? The Y2K
problem, Unix’s “elapsed time
since 1/1/1970” problem, and
others of this ilk are the residue

of faulty introspection in our
software engineering efforts. Per-
haps detection models for predi-
cate projectability and sundry
other new riddles of inductive
reasoning should be added to our
working stock of software met-
rics. According to Jones, the
“optimal time” to begin Y2K
repairs was 1995 or earlier, with
October 1997 as the last point
that a mid-size corporation could
commence their repairs with any
hope of finishing by 2000. Per-
haps the time to look for these
detectable, though not-yet-
detected, new riddles is now.

For Further
Reading
• Jones, C. The

Year 2000 Soft-
ware Problem:
Quantifying the
Costs and Assess-
ing the Conse-
quences, ACM
Press, New
York, 1997.
The appendices
contain lists of a
variety of useful

Web, print, and consulting
resources dealing with the Y2K
problem.

• Wegner, P. “Why Interaction is
More Powerful than Algo-
rithms” (Communications, May
1997, pp. 80–91). My response
appeared in the September
1997 “Forum,” pp. 20–21.

Hal Berghel (www.acm.org/~hlb) is a
professor of computer science at the
University of Arkansas and a frequent
contributor to the literature on cyberspace.

© ACM 0002-0782/98/0300 $3.50

c

COMMUNICATIONS OF THE ACM March 1998/Vol. 41, No. 3 17

Figure 1. Y2K expenses by year
by type

Figure 2. Y2K expenses by
programming language (as percentage of
total cost)

