
COMMUNICATIONS OF THE ACM April 2008/Vol. 51, No. 4 13

IT security has received
increased attention primarily,
but not exclusively, due to the

increased threat from viruses,
worms, password crackers, Trojan
horses, and a cornucopia of other
types of malware and exploits. As
a consequence of this increased
attention, a variety of secu-
rity models have been pro-
posed. Security in depth
(SID) is one such exam-
ple. Winn Schwartau’s
time-based security is
another. In this column,
I offer another modest
example extrapolated
from popular culture: faith-
based security, aka “no network
left behind.”

SECURITY MODELS

By their very nature, security
models are usually out of date.
Security modeling is akin to dri-
ving forward while looking
through the rearview mirror since
security systems are primarily
reactive. The problem is illus-
trated by zero-day exploits where

the first appearance of an exploit
coincides with the first appear-
ance of a vulnerability. One of the
grand challenges in future digital

security is to figure out how to
model the unknown in anticipa-
tion of post-modern exploits,
such as zero-day attacks and so-
called “super worms.”

Security models also tend to be
obtuse. Though “security in
depth” is a common phrase in IT
circles, few could define it pre-
cisely. The phrase has been used

to describe everything from cas-
caded network defenses and lay-
ered intrusion prevention/detection
systems to differentiated pass-

word-control policies. About
the only common theme I

can detect is that security-
in-depth seems to be
used interchangeably
with “more is better.”

THE SECURITY IN DEPTH

FALLACY

There is an interesting
fallacy in informal logic

called the principle of
vacuous alternatives. It

goes something like this:
Take any sentence. If the nega-

tion of that sentence seems pre-
posterous, then the original
sentence is likely vacuous. As an
example, consider “I believe in
justice.” The negation, “I don’t
believe in justice,” seems like an
absurd remark. It’s not that it’s
nonsensical. Rather, it has no
conversational contribution to
make as it’s difficult to imagine
how any reasonable person couldH

A
L

M
A

YF
O

R
TH

Digital Village Hal Berghel

Faith-Based Security
A tongue-in-cheek look at serious security issues.

14 April 2008/Vol. 51, No. 4 COMMUNICATIONS OF THE ACM

disagree with it. Vacuous
propositions behave like
semantic tautologies.

Such is the case with
security in depth. Have
you ever heard an IT pro-
fessional champion the
cause of “superficial secu-
rity,” “shallow security,”
or “myopic security?” Not
likely. This is the primary
reason why security in
depth is so poorly under-
stood. Its vagueness
quickly gives way to vacu-
ousness on inspection.

SECURITY THROUGH

OBSCURITY

I admit that a prima facie case
could be made for security in
depth even in the naive sense of
“more is better.” When I propose
adding a new vitamin to my diet,
my internist tells me “At this point
there is no physiological evidence
that suggests that this substance is
harmful to humans, so knock
yourself out.” As with my vita-
mins, a random application of
security applications and systems is
unlikely to do any more harm
than lure one into a false sense of
security and perhaps slow things
down a bit. And like the vitamins,
when carefully and judiciously
applied and evaluated in a con-
trolled experimental setting, even
naive security in depth can be of
some value.

Such is not the case with our
third model: security through
obscurity (STO). No prima facie
case may be made here. The gen-
eral premise of STO is that invio-

lability is a consequence of the
enigmatic. This is same sort of rea-
soning that helped the Imperial
Japanese Navy and German
Wehrmacht become the global
powers they are today. The Japan-
ese Purple and JN-25 codes and
the German Enigma cipher system
were assumed to be inviolate pre-
cisely because of their hidden
complexity. As far back as the
1880s, Auguste Kerckhoffs pro-
posed that no cryptographic sys-
tem that purports to be secure
should be predicated on the
assumption that no one would
ever figure out how it worked—
rather the emphasis should be
robustness of the procedure and
key strength. Both Axis powers
failed to comprehend the weak-
ness of STO. This also speaks in
favor of the robustness of open
source software.

Despite our intuitions, many
software systems have adopted
STO to their cost. To illustrate:

Windows buffer over-
flows, such as the
IDQ.DLL overflow in the
Code Red Worm, were
entirely predictable to
anyone who knew how
the Windows ISAPI
extensions worked. This
was a design defect that
produced a buffer over-
flow and ran the malware
with elevated privileges
since IDQ.DLL runs
within Inetinfo.exe as local

administrator. It was assumed no
one would notice the inadequate
bounds and error checking built
into the operating system. We’ll
place this in STO category I: fail-
ure to write secure code. Concep-
tually similar vulnerabilities, like
format string attacks (printf) in
Unix and SQL compromises in
Windows (IIS/RDS), would also
fall into our first category.

Another example is the entire
suite of 802.11 security vulnerabili-
ties. In this case, the defect was
actually built into the standards.
Nowhere is this more evident than
with the wired equivalent privacy
(WEP) protocol.

WEP has many “issues” that
go beyond our current interest.
However, one stands out as a par-
adigm case of a mistake carried
through to perfection: the sloppy
implementation of the RC4 sym-
metric, stream cipher. The faulty
WEP algorithm was a part of the
original IEEE 802.11 protocol

Digital Village

Figure 1. The WEP initialization
vector is communicated in
cleartext (for example,
0x58CDB1).

specification.
Generally, WEP works

like this. The RC4 algo-
rithm uses the pseudoran-
dom generation algorithm
(PRGA) to produce a
key-stream of bits that are
XORed with the plaintext
to create the ciphertext.
Key-change is accom-
plished by adding an Initialization
Vector (IV) that makes each
packet key unique. The IV is con-
catenated with the WEP key to
form the WEP seed.

The properties of the IV are
interesting:

1. The IV is only 24 bits long;
2. The IV is always prepended to

the WEP key;
3. The IV is always transmitted in

cleartext (see Figure 1);
4. Some IVs are “weak” in the

sense that they suggest informa-
tion about the key—the first
bytes of a typical WEP packet
are typically the snap header
0xAA (see Figure 2);

5. The IEEE standards were so
ambiguous that many vendors
used sequential IV generators
that begin with 00:00:00 and
wrap with FF:FF:FF; and

6. The key-generation algorithm
itself is hobbled because the
most significant bit of each key
is always 0; thus it only pro-
duces unique keys for seeds
00:00:00:00 through
00:7F:7F:7F.

The community of FMS (after
Fluher, Mantin, and Shamir)
attack analysts reacted immedi-
ately. In short order a flurry of
successful WEP-cracking tools
were developed (WEPAttack,
WepCrack, Aircrack, WepLab,
WEPWedgie) all made possible by
the faulty implementation of
RC4. A virtual cottage industry
was made possible because the
original WEP security standard
followed the STO model. We will
put the WEP vulnerability into
our new STO Category II:
botched implementations.

One might think the frailty of
WEP would have triggered a total
rethinking of WiFi security. Such
is not the case. While WEP’s suc-
cessor, Wireless Protected Access
(WPA), did strengthen the
integrity-checking algorithm and
key management, it basically just
added another layer of obscurity
over the sloppily designed WEP in
the form of a shell over the RC4
algorithm. Deployed by the Wi-Fi
Alliance in 2002, WPA didn’t
really eliminate the key-manage-
ment problem inherent in WEP,

but rather proliferated the
number of keys involved.
WPA uses a pairwise mas-
ter key (PMK) to generate
additional keys that are
combined with sender
MAC address, packet
sequence number, the
wireless Service Set ID,
and SSID length as grist
for the hashing mill
(PKCS #5 v. 2.0). Let’s
think about this. If an
underlying procedure is

faulty, does it become less faulty if
we use it over and over and over
again? WPA relied on STO, just
like its predecessor. Predictably,
within a year of release, a success-
ful WPA attack was discovered.
Shortly therafter, the WPA-crack-
ing utility coWPAtty was released
that reverse engineers the PMK
from the SSID, SSID length, and
sequence number MAC address,
and WiFi security was back at the
starting block.

Neither was the Extensible
Authentication Protocol
immune. Cisco’s version of

EAP, LEAP, deserved the term
lightweight. LEAP’s major fault
was that it relied on the MS-
CHAPv2 hashing algorithm for
authentication. MS-CHAPv2
does not use “salt,” so the same
plaintext value will always pro-
duce the same hashed value. This
makes EAP-LEAP vulnerable to
dictionary and replay attacks.
Once again, the defense of EAP-
LEAP ultimately relied on no one
finding out how the system
works. Auguste Kerckhoffs could

COMMUNICATIONS OF THE ACM April 2008/Vol. 51, No. 4 15

Figure 2. The 802.11 frame body
always begins with a SNAP
header (for example, AA).

have predicted this without ever
seeing a computer.

My final example came to my
attention in the past few weeks.
MIFARE is a proprietary encryp-
tion technique for RFID (radio
frequency identification) devel-
oped by Philips and Siemens in

the late 1990s. MIFARE is an
attempt to cryptographically
secure the now-ubiquitous RFID
space that relies on RF transmis-
sion for communication between
transmitter and receiver.

Following the common
theme, the security of the
proprietary MIFARE system

is predicated on the belief that no
one will discover how it works.
And, as one might predict, some
MIFARE circuits were reverse
engineered down to the gate level.
The result was the discovery that
the random number generation
that drove the encryption resulted
from a 16-bit key linear feedback
shift register based on a master
key and a time signature. With
RFID sniffing via an open PICC
(proximity integrated contactless
chip) card and a logic analyzer, it

is possible to discern patterns in
the challenge-response authentica-
tion procedure that can be used in
a replay attack, and from there it
is possible to recover the key from
the value of the unique identifier
and the observed behavior of the
shift register in the authentication

process. We’ll create STO cate-
gory III for this MIFARE vulner-
ability: turning chip designers
loose with CAD/CAM software
without adequate education and
training.

FAITH-BASED SECURITY

Examples of failed STO could fill a
weighty tome. I’ve mentioned
three. These examples highlight the
consequences of building deficien-
cies into the design of things or at
least unwittingly including them.
The flaws would likely have been
detected and reported had the
code, system, or chipset been care-
fully analyzed during impartial peer
review by qualified professionals.

But I don’t want to leave this
critical view of deficiencies at the
feet of naive SID or STO. I’m
looking for first principles here.

I’ll refer to the common ele-

ments between them under the
general rubric of faith-based secu-
rity—in the most secular sense of
this popular phrase. The only
thing these two security models
have going for them is the unsup-
portable and unjustified faith that
they are reliable. These are mani-
festations of the technologist suc-
cumbing to the self-deception
that secrecy and tight lips will
cover all design misjudgments.

I propose that faith-based secu-
rity enter our vocabulary as the
default model of IT security. Let’s
get the faith-based orientation of
naive security in depth and STO
up front where it belongs. Think
of the advantages. If an auditor
asks why we decided to place our
Web server on the inside of our
enterprise firewall, we report that
we have faith in our Internet
comrades. Faith is a predicate of
propositional attitude, like belief,
want, and desire. If someone says
they have faith in something, one
can’t say “No you don’t,” at least
not until someone comes up with
a method to read thoughts. The
auditor doesn’t have faith, we do
have faith; half-empty, half-full.
You get the idea.

Since the integrity of a faith-
based security implementation is
by definition taken on faith, we
hold the position that whatever
policies and procedures discovered
by an auditor were actually
intended. So what if our corpo-
rate mailer is running on an oper-
ating system that hasn’t been
supported since perestroika—we
have faith in good old “digital
iron.” After all, when was the last
time you read about some hacker

16 April 2008/Vol. 51, No. 4 COMMUNICATIONS OF THE ACM

Digital Village

URL PEARLS
When it comes to digital security systems, secrecy is indeed the mother of dys-
function. The security vulnerabilities described in this column were real and betray
only the slightest hint of literary hyperbole. For those interested in the details, two
of the security-through-obscurity examples were covered in previous columns: the
Code Red Worm was discussed in December 2001; and Wireless Infidelity
appeared in December 2004 and again in August 2005. The RFID MIFARE exploit
was presented at the 24th Chaos Communication Congress last December (see
events.ccc.de/congress/2007); a video of the presentation by Karsten Nohl and
Henryk Plotz is available at video.google.com/videoplay?docid= 425236768097439-
6650&hl=en. c

COMMUNICATIONS OF THE ACM April 2008/Vol. 51, No. 4 17

Coming Next Month in
COMMUNICATIONS OF THE ACM

Web Searching in a Multilingual World
How Intuitive is Object-Oriented Design?
Words for Pictures for Dual Channel Processing
Emerging Trends in M-Government
Taming Heterogeneous Agent Architectures
Improving the Change Management Process
Coordination in Emergency Response

Management
Reducing Internet Auction Fraud

Also: Meet the candidates running for
ACM’s general election

compromising OS/2 or Multix?
So the primary remote access to
our file server is TFTP; our spin
is that any protocol that old is
“time-tested.” So our password
security policy requires LAST-
NAME followed by YEAR; we
emphasize that we have a rule for
password expiration built right
into our password security policy.

No baselines to measure, no
checklists to distract us, no con-
cern over best practices, no spe-
cific objectives to define. COBIT?
Out the window. FISCAM? Who
needs it? SOX, HIPAA, GLB? No
thank you.

So the next time someone chal-
lenges your organization’s security
model, rather than beating
around the bush, making excuses,
blaming budgetary woes, faulting
management’s lack of vision, or
chastising vendors, think outside
the box. State up front that your
security model is faith-based and
take a swerve around all the
minutiae. Treat these details like
all of those log files you haven’t
reviewed since you upgraded to
NT Service Pack 2. Build in back-
ward “time basing” to the ulti-
mate IT apocalypse—the
implosion of the commercial
Internet. After that, who will care
about digital security anyway?

Hal Berghel is associate dean of the
Howard R. Hughes College of Engineering at
the University of Nevada-Las Vegas, the
director of the Center for Cybersecurity
Research (ccr.i2.nscee.edu), and co-director
of the Identity Theft and Financial Fraud
Research and Operations Center
(www.itffroc.org).

c

© 2008 ACM 0001-0782/08/0400 $5.00

DOI: 10.1145/1330311.1330315

